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CHAPTER I: INTRODUCTION 

Inductively coupled, argon-supported plasmas (ICP's) 

possess properties that make them useful atomization-

ionization-excitation sources for analytical atomic emission 

spectroscopy (1). Among the several fundamental ICP proper

ties that have not been adequately characterized are the 

excitation temperature distributions and the electron number 

densities (hereafter denoted by n ) that are experienced by 

the analyte species and the argon support gas. Most measure

ments reported to date have primarily characterized the 

temperature and n^ environment of the support gas in plasmas 

that have not been extensively used for analytical purposes 

(2-14). Recently, several experimental studies of the 

excitation temperature and n^ distributions experienced by 

analyte species have been reported (15-20) and theoretical 

treatments of these and other relevant ICP properties have 

been discussed (21-23). Despite these efforts significant 

discrepancies and inconsistencies still exist among the 

reported results. The following typical examples may he 

cited. First, effective (spatially integrated) temperatures 

and number densities were reported by Boumans and de Boer 

(19) who concluded that their data could not be used for 

explaining interelement effects because it was useless to 

"speculate on'what precisely happens without detailed 

knowledge of the complex changes in the spatial structure of 
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the ICP." Second, some preliminary radial (spatially 

resolved) temperatures reported by Kornblum and de Galan (l6) 

exhibited large scatter and peculiarly steep off-axis peak 

behavior. Third, the n^ values determined by Jaroz e^ a2. 

(2b) and Mermet (17a) from Stark broadening measurements were 

two orders of magnitude greater than those obtained from Saha 

ionization equilibrium calculations based on Mg atom/ion 

emission line intensity ratios. Fourth, Kalnicky ejt aJ. (l8) 

recently reported spatially resolved, radial excitation 

temperatures experienced by the Fe I thermometric species 

that were essentially in agreement with the values reported 

by Mermet and Robin (2a) and Alder and Mermet (15) and with 

the Doppler temperatures reported by Human and Scott (20) but 

disagreed significantly with excitation temperatures reported 

by Kornblum and de Galan (16), who cautioned that "only the 

overall shapes of the distributions and the order of magni

tude of the quantities" could be concluded from their data. 

Fifth, recognized differences still exist between computer 

simulation and experimental studies of ICP's used for 

spectrochemical analysis (21,22). Finally, even the tempera

ture measurements themselves are rendered Inconsistent by 

the lack of accuracy and agreement in published transition 

probability data (15,17,18). 

The large discrepancies between the n^ values calculated 

by line broadening methods and those obtained from Saha 
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ionization calculations, which were reported by Jaroz e^ al. 

(2b) and Mermet (17a) led these investigators to question the 

validity of the local thermodynamic equilibrium (LTE) 

assumption for the operating conditions of their plasma. 

Clearly, more investigations on temperature and n^ distri

butions are required to interpret discrepancies in reported 

values and to lead to a more definitive understanding of the 

atomization, ionization, and excitation processes occurring 

in analytically useful TCP's. The purpose of this investi

gation is, therefore, to examine the spatially resolved, 

radial excitation temperatures and radial n^ distributions 

experienced by the analyte species. These examinations 

Include observations at several sites in the plasma and, 

with and without the presence of an easily ionized element 

(EIE). 
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CHAPTER II. DIAGNOSTIC TECHNIQUES 

LTE in Analytical Inductively Coupled Plasmas 

In a rigorous sense, temperature is a physically meaning

ful concept only when a system is in complete thermodynamic 

equilibrium (TE). In such a system a unique value of tempera

ture describes: (1) a Maxwellian velocity distribution for 

all particles; (2) excitation according to Boltzmann's 

distribution law; (3) ionization according to the Saha-Eggert 

relationship; (it) dissociation-recombination according to 

the Guldberg-Waage mass action law; and (5) the distribution 

of the electromagnetic radiation according to Planck's law 

(24-31). However, the strong temperature and density 

gradients which exist in almost all laboratory plasmas 

prevent the establishment of TE and it. fniiows lhat the 

radiation collected from these plasmas strongly deviates 

from the Planck function distribution (29). Despite these 

deviations from TE, conditions may exist for which the useful 

concept of local thermodynamic equilibrium can be employed in 

these plasmas. The latter applies when radiation equilibrium 

is not established but all other TE relationships remain 

valid and are governed by the "local temperature" even though 

different temperatures are allowed at different points in the 

plasma. The LTE state is reached when the local rate of 

equipartition of energy over the different degrees of freedom 
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is much faster than the net rate of transport of heat, mass, 

and radiation through the plasma. 

When the various degrees of freedom are not equilibrated 

it is useful to designate "temperatures" which are named 

after the special process to which they apply, e.£., trans

lation temperature, excitation temperature, etc. The better 

the agreement between these temperatures, the closer the 

approach to equilibrium, and the more physically meaningful 

the temperature concept. The conditions necessary to assure 

the validity of the LTE assumption for common laboratory 

plasmas have been discussed in detail elsewhere (29,31) and 

will not be reiterated here. Likewise, many excellent 

theoretical treatments related to plasma diagnostics are 

available (3,11^24,29,32-48). Therefore, the following 

discussions will be limited to those techniques relevant to 

temperature and n^ measurements. 

Spectroscopic methods of temperature measurement are 

generally considered superior to probe techniques because 

the former do not disturb the microscopic system and, in 

fact, may be the only feasible approach for high temperature 

sources or for those sources which are inaccessible to 

probes (3b,47,48). 

The LTE state is generally assumed to exist in the 

central portions of argon-supported, inductively coupled 

plasmas sustained at atmospheric pressure (18). If this 



www.manaraa.com

6 

assumption is accepted, spectroscopic techniques may be com

bined with the Boltzmann energy distribution and the Saha-

Eggert ionization equilibrium relationships to yield tempera

ture and n distributions. The limitations and physical 

significance of the temperature values so obtained have been 

adequately reviewed (30,36,40). In particular, caution must 

be exercised in interpreting the physical significance of the 

temperatures and n values determined unless appropriate 

mathematical treatments, such as Abel inversion techniques 

(i|9_58), are used to transform the experimentally measured 

lateral (average) distributions of spectral line radiances to 

their corresponding spatially resolved radial (local) distri

butions. The requirements of the Abel inversion techniques 

employed in this investigation are discussed in a later 

c:p prion nf thiq f"'h CJ n-t-on 

The observations of Jaroz e^ (2b) and Mermet (17) 

and the results of this investigation suggest that the LTE 

assumption may be invalid for some operating conditions 

employed in the spectrochemical applications of these 

plasmas. Indeed, the assumption of LTE has been questioned 

for other plasmas as well (^5,59-63). 

Temperature Calculations, Thermometric Species, 

and Transition Probabilities 

The relative lateral intensity of an emission line 

radiating from a source in LTE with negligible self-absorption 
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and homogeneous analyte distribution is given by (29,30,40) 

Where, d = optical depth of the plasma within the viewing 

field of the spectrometer, 

Aqp = relative transition probability of spontaneous 

emission for the transition q > p, 

h = Planck's constant, 

Vqp = frequency of the emission transition, 

n^CX) = number density of the emitting level at 

lateral displacement X. 

This equation describes the space-integrated (averaged) 

emission over the depth of the plasma and, accordingly, 

represents the power radiated per unit solid angle per unit 

area, which is collected within the viewing field of the 

spectrometer (29,40). Equation 1 may be combined with the 

Boltzmann expression for n^ to yield 

= W V \p ̂  -jirrfïïï 
"  L  J  

where, g^yg^ = statistical weights of the emitting and 

ground level, respectively, 

n^(X) = number density of the ground level at 

lateral displacement X, 

Eq = energy of the emitting l e v e l ,  
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k = Boltzmann's constant, 

T(X) = temperature at lateral displace

ment X. 

The desired relative radial (local) intensities (J^^) are ob

tained from Abel inversion of the measured lateral (averaged) 

intensity profiles and represent spatially resolved, per-

unit-volume quantities. 

With consideration of radial quantities and by rearrange

ment of Equation 2, the radial "slope" temperature is given by 

( 2 9 , 3 3 , 3 6 , 4 0 )  

/g A V \ E 

ÏSTrT |h n ? R )  
(3) 

where R denotes the radial position in the plasma. For 

emission lines originating from the same ionization stage 

a plot of ^n V8_- should yield a straight line with 

slope equal to l/kT(R) where, T(R) is the "slope" tempera

ture at radius R. Equation (3) may be solved simultaneously 

for two spectral emission lines (q->p and t->s) to yield the 

radial "two-line" temperature defined by the following 

expression: 

T(R) = 0 . 6 2 4 7 ( E  log 
10 St^ts^ts ^qp(R) 

(4) 

when E and E, are expressed In reciprocal centimeters (cm~^). 
q t 
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Certain conditions must be satisfied before Equations 3 

and 4 may be used for temperature determinations, namely, 

relative radial emission Intensities must be directly 

proportional to Integrated line radiances and they must not 

be affected by self-absorption (30). The Importance of 

employing quantities strictly proportional to integrated line 

radiances for calculations based on spectroscopic measurements 

where slit effects are important has been extensively treated 

for molecular (64) as well as atomic lines (24,30,65), 

therefore, only a brief summary will be presented here. 

When emission from a spectral transition is monitored by 

a spectrometer, the true profile is distorted by the instru

ment with the distortion being proportional to the reciprocal 

of the resolving power of the monochromator. These distor

tions are of electrical and optical origin and it is 

convenient to treat them separately. Accurate intensities 

can be obtained only if instrumental distortions are properly 

accounted in the measurement. When a spectrometer is set at 

a single value, a discrete wavelength is not transmitted but, 

rather, a range of wavelengths are collected each of which 

contributes to the recorded line profile. This wavelength 

interval is referred to as the bandpass of the Instrument. 

The weight of each contribution can be expressed as a 

function of displacement from the line center and determines 

a curve called the slit function. Accurate Intensity measure

ments are made only when the bandpass of the instrument is 
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negligible in comparison to the halfwldth of the line inten

sity profile. The exit slit distribution is predominantly 

determined by diffraction effects for slits narrow in 

comparison to the wavelength of the impinging radiation. 

When the slits are sufficiently wide, the contributions to 

the geometrical image from diffraction and optical distortions 

are rendered negligible. Thus, if the width of the exit slit 

is much wider than the entrance slit, the geometrical image 

of the latter falls entirely within the band pass of the 

spectrometer and the measured intensity is proportional to 

integrated line radiance (30). A trapezoidal line shape 

should be obtained. Aberration and diffraction effects tend 

to round off the top and base of the profile. 

The lateral emission intensities obtained here were 

vu. YV _L V ii U lie Cii CLiiV C CXliU ÛXJ-OÛ U1 ViiC lliUl iUU iXi^UiliO. L/Ul* 

set at the same width (I5 ym). Time integrated intensities 

were obtained at the maximum of the respective emission line 

profiles when the monochromator was "peaked" on a line. 

Under these conditions, the measurements did not represent 

the integrated area (radiance) under the line profiles. 

However, the peak intensities for Fe I thermometric lines 

were proportional to integrated radiances when the latter 

were obtained with the exit slit much wider than the 

entrance slit (30). Consequently, peak intensities were 

employed in this study because: (1) these intensities were 
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proportional to integrated line radiances, (2) the resolution 

of the monochromator deteriorated rapidly as the exit slit 

was opened wider than the entrance slit, and (3) more 

elaborate measurement procedures were required to obtain the 

Integrated radiances. 

Neutral iron was selected as the thermometric species 

because its emission lines possess desirable characteristics 

for spectroscopic temperature determinations (30,-10). Among 

the factors considered in the line selection process were: 

(a) maximal spread in excitation potentials to minimize 

relative error in calculated temperatures, (b) freedom of 

spectral interference from plasma components, (c) availability 

of accurate transition probabilities, and (d) wavelength 

proximity precluding the necessity of calibrating the detector 

response with respect lo wavelength. Go that the measurementG 

and Abel inversion operations would not be too unwieldy, the 

number of lines initially employed was restricted to four. 

A number of Pe I transition probability tabulations were 

examined for these lines (30,66-73a); of the most recent 

compilations, only the Reif (30), and the Banfield 

and Huber (65) collections provided transition probability 

data on all of the four lines, and Huber and Parkinson (67) 

on only two of the lines. These lines, their wavelengths, 

excitation energies and the statistical weights of the 

emitting levels (74), and relevant transition probability 
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data are summarized in Table I.^ The relative transition 

probabilities for the useful sets of data were normalized to 

the Pe I 371.994 nm line because the lifetime of this tran

sition is well known (66,67). It is evident that there is 

good agreement among the Pe 382.043, 382.444, and 382.588 nm 

lines for the Reif and Banfield and Huber data. Thus, 

a priori, good agreement in the temperature profiles should 

be obtained for calculations based on these lines, but a lack 

of consistency should be evident if the Pe 381.584 line were 

included. Indeed, temperatures obtained with various combin

ations of transition probabilities involving the Pe I 

381.584 nm line showed this lack of consistency particularly 

for those calculated from two-line combinations (I8). 

Because virtually identical temperature profiles resulted 

from three-line slope temperature calculations (18) for 

transition probability data from references 30 and 66, the 

three-line set excluding the Pe I 381.584 nm line was consid

ered acceptable for Inclusion in studies for this dissertation 

research. 

•^After this dissertation research was completed an additional 
transition probability tabulation (73b) was found which pro
vided data on three of the four lines in Table I. Consider
ation of these values revealed good agreement with the Pe I 
382.043 nm and 382.588 nm line data but not for the 381.584 
nm line. Inclusion of these data would neither change the 
conclusions drawn about these lines nor affect the tempera
ture results obtained with the lines employed from this 
table. 
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Table I. Fe I emission line data .(.four-line, set) 

X(nm)^ E^(cm~^)^ Relative Transition Probabilities^ 

R BH HP 

381.584 38175 7 0.948 1.540 1.530 

382.043 33096 9 0 . 6 3 8  0 . 6 5 6  0 . 8 8 2  

382.444 26140 7 0 . 0 2 8 3  0.0292 — — — 

3 8 2 . 5 8 8  33507 7 0.567 0.61c — * " 

= wavelength of the transition q > p, and for 
subsequent tables. 

^Eq = excitation energy of the emitting level, and for 
subsequent tables. 

°g = statistical weight of the emitting level, and for 
subsequent tables. 

^Relative transition probabilities normalized to the 
Fe I 371.994 nm line by = 0.153: R = Reif (30); 

BH = Banfield and Huber (66); HP = Huber and Parkinson (67). 
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An additional Fe I ten-line set was selected for 

temperature measurements; the relevant data for these lines 

are summarized in Table 11.^ In selecting these lines, the 

criteria discussed previously as well as consistency among 

the transition probability data were emphasized. An Ar I 

eight-line set was also selected for determination of the 

excitation temperature environment experienced by the support 

gas. The relevant data for these lines are given in Table 

III ( 7 4 - 8 0 ) .  

The operation of the temperature and Abel inversion 

computer program for slope temperature calculations employed 

in this dissertation research is discussed in Appendix A. 

A listing of the source statements of this program is also 

included in this appendix. 

Abel Inversion Calculations and Source Symmetry 

Excellent discussions of the basic principles of the 

Abel inversion calculation and the various methods of solu

tion are found in references 49 and 50. Preliminary 

The Bridges and Kornblith tabulation (73b) also provided 
transition probability data on these lines which were In 
excellent agreement with the values listed in Table II. As 
before, inclusion of these data would neither significantly 
change the conclusions drawn about these lines nor the 
temperatures obtained with them. 
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Table II. Fe I emission Une data (ten-line set) 

À(nm) E^(cm"^) Relative Transition Probabilities 

R BH HP 

3 6 7 . 9 9 2  27167 9  0.0138 0 . 0 1 5 1  0 . 0 1 6 9  

3 7 0 . 5 5 7  2 7 3 9 5  7  0 . 0 3 2 8  0 . 0 3 4 1  0 . 0 3 7 2  

3 7 1 . 9 9 4  2 6 8 7 5  1 1  0 . 1 6 3  0 . 1 6 3  0.163 

3 7 2 . 2 5 6  2 7 5 6 0  5  0 . 0 5 0 5  0.0531 0.0580 

3 7 3 . 4 8 7  3 3 6 9 5  1 1  0 . 8 8 6  0 . 7 7 6  0 . 8 6 7  

3 7 3 . 7 1 3  27167 9  0 . 1 4 3  

0
 

1—
! 0

 0 . 1 4 3  

3 7 4 . 8 2 6  2 7 5 6 0  5  0 . 0 9 0 4  0.0870 0 . 0 9 9 4  

3 7 4 . 9 4 9  3 4 0 4 0  9  0 . 7 4 4  0 . 6 8 1  0 . 7 9 8  

3 7 5 . 8 2 4  3 4 3 2 9  7  0 . 6 1 1  0 . 6 1 1  0 . 6 7 4  

3 7 6 . 3 7 9  3 4 5 4 7  5  0 . 5 2 3  0 . 6 1 0  0 . 6 2 2  
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Table III. Ar I emission line data 

X(nni) E^(cm~^) x 10 (sec~^)^ 

AP MC CS BTW G BW 

425. 118 116,660 3 0.0085 0.0089 0 . 0 1 3 2  0 . 0 0 7 5  0 . 0 0 7 9  0 . 0 0 7 6  

425. 936 118,871 0.360 0 . 3 6 6 5  0.450 0.3643 0 . 3 6 0  0.320 

426. 629 117,184 5 0 . 0 2 8  0 . 0 2 6 5  0 . 0 3 6  0 . 0 2 9 4  0.028 0.023 

427. 217 117,151 3 0.071 0 . 0 6 8 8  0 . 0 9 0  0 . 0 7 6 9  0.071 0 . 0 6 3  

o
 

CO 

010 116,999 5 0.034 0 . 0 3 1 8  0.042 0 . 0 3 6 6  0.034 0.031 

CO 0
0 

356 118,469 [5 0.049 0 . 0 5 0 6  0.074 0.0551 0.049 0.048 

4 3 3 .  535 118,459 3 0.0333 0 . 0 3 0 8  0.044 0 . 0 3 8 5  0.040 0.029 

434. 545 118,408 3 0. 028 0 . 0 2 7 3  0.041 0 . 0 2 7 8  0.028 0.022 

^Absolute transition probabilities: AP = Adeock and Pluiatree (75); 
MC = Malone and Corcoran (76); CS = Corliss and Shumaker (77); BTW = B. T. WuJec 
(78); G = Gericke (79); BW = B. Wende (80). 
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calculations Indicated that the Cremers and Blrkebak data 

approximation method (50) was superior to the numerical method 

of Nestor and Olsen (49). The Cremers and Blrkebak method 

provided: (a) better agreement of calculated radial 

coefficients with known values (^^-2%) when Integrable test 

functions were employed (53) and, (b) less scatter in calcu

lated radial intensities when real data were employed. The 

computational procedures and error analyses for these methods 

are discussed in Appendix B. An P-test for best fit (8l) 

from the linear to t.he maximum allowed 4-th degree fit and 

polynomials of the type of Equations B20 and B36 in 

Appendix B were applied to smoothed lateral intensity profiles 

when the Cremers and Blrkebak method was employed. Second 

degree polynomials with '^20 points per profile were generally 

found to provide adequate fits for bell-type lateral profiles 

but higher degree fits were required for toroidal distri

butions . 

The optical system employed and the emission symmetry of 

the radiating source must meet several requirements if lateral 

e,riisbion profiles are to be reliably transformed by Abel 

inversion techniques. Figure B-1 (Appendix B) illustrates the 

spatial relationship between the measured lateral intensity, 

I(X), at displacement X; and, the radial intensity, J(R), at 

radius R from the center of a circularly symmetric source 

when normal side-on observation is employed. Examination of 
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this diagram reveals that the following conditions are 

necessary prerequisites for reliable radial intensity calcu

lations: 

1) The depth-of-field (DOF) of the optical transfer 

system (OTS) must extend beyond the source 

boundaries. 

2) The analyte emission Intensity distribution must 

be circularly symmetric about the plasma axis. 

In addition to these requirements, the plasma source must be 

optically thin, i.e., there must be negligible self-

absorption of the emission lines of interest. 

For the ideal case the OTS would have infinite DOF so 

that all emission points within the source volume along the 

optical axis would be transferred with exactly the same 

efficiency. However, the DOF of any real OTS is not infinite 

so that defocussing along the optical axis is an important 

consideration (82) when relative intensity measurements are 

made. For radial Intensity calculations a DOF extending 

beyond the plasma boundaries is sufficient. This is accom

plished with a low aperture optical system (f/40 to f/50) in 

which the lens and monochromator entrance slit are stopped 

to a diameter so that the plasma volume observed is 

essentially cylindrical. When the latter condition prevails 

the observed solid angle is chosen so that any two lines 

= X and = X + AX (Figure B-1) defining the lateral 
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sampling zone for an I(X) value can be considered parallel. 

For the wavelength range employed in the present investi

gation, the focal length of the lens was about 150 mm so that 

a 3 mm diaphragm produced an approximate f/50 system. Hence, 

at a plasma radius of 10 mm, the f/50 system sampled radiation 

over a cross section of 0.2 mm diameter. With the above 

conditions the DOF extended beyond the plasma boundaries and, 

defocussing problems were minimized. The large aperture 

optical systems normally employed in analytical investigations 

cannot be used if precise lateral intensities are to be 

measured. The enlarged acceptance cone of such systems 

introduces defocussing problems into lateral intensity 

measurements, leading to distorted lateral intensity profiles, 

and, subsequently, erroneous radial intensity and temperature 

distributions. 

The second condition necessary for reliable radial 

intensity determination was verified when profiles across the 

entire emission zone showed circular symmetry about the plasma 

axis. Experimental verification of this symmetry criterion is 

presented later in the RESULTS section (Chapter V) of this 

thesis. The requirement of negligible self-absorption was 

verified for the analyte thermometrlc lines of Interest when 

plots of log I(X) vs. log C showed linearity over several 

orders of magnitude 'n concentration. 
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Electron Number Density Measurements 

Saha-Eggert's ionization equilibria methods 

The theory and application of n^ determinations from 

Saha-Eggert ionization equilibrium calculations has been 

discussed elsewhere (29,36,40,83). This method requires the 

measurement of relative emission line intensities from 

successive ionization stages, generally for the neutral atom 

and singly ionized species. When these intensities are 

combined with the known equilibrium relationships between 

spectral emission and temperature and with the Saha-Eggert's 

expression, the n^ may be calculated. The n^ values so 

obtained are dependent upon the assumption that the plasma is 

in the LTE state, which may not be the case. 

Five elements with neutral atom ionization potentials 

ranging from 6.11 eV (Ca I) to 9-39 eV (Zn I) were selected 

for atom/ion emission line intensity measurements. The 

factors considered in the selection process were: (a) avail

ability of sufficiently intense atom/ion line pairs; 

(b) availability of transition probability data for the atom 

and ion lines; (c) closely matched excitation energies for 

the atom and ion lines so that the exponential temperature 

effect would be minimized; (d) freedom from spectral 

interferences; and (e) wavelength proximity precluding the 

necessity of calibrating the dectector response with respect 

to wavelength. The line wavelengths, their excitation 
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energies, statistical weights of emitting levels (74,84) and 

transition probability data (66,85-92) for the species 

selected are given in Table IV. The last column of this table 

gives the averages and ± limits of the gAX ratios listed. The 

relative ± limits range from about ±2% for Ca to ±12% for Cd. 

For the emission lines of the neutral atom and first 

ionised species the radial n^ is given by (29,36,40) 

n (R) = 11.83 X 10^5 4® T(R) 3/2 
® J+(R) g°AV (5) 

rE'''-E°-E° +AE,°1 

"  ' ' P  [  k T ( R )  

where, (*^),( ) denote the neutral atom and singly Ionized 

species, respectively, 

X = wavelength of the emission transition, 

c 
'1 
E.° = ionization energy of the neutral atom 

species > 

AE^° = lowering of the ionization energy. 

A correction was applied to the ionization energy to 

account for the interaction of free atom states with the 

electric microfield, which is produced by the charged plasma 

particles (31,36). A number of methods for calculating AE^° 

have been reported (31,36,59). When the Unsold formula (31) 

Vf a s applied, a value of = 403 cm ^ (0.05 eV) was found 
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Table IV. Emission line data for Saha-Eggert ' s electron number density calculations 

o o ,+ 
Species A(nm) E (cm ) g ^Ratios^ Average Ratio 

9 9 B: A 

Ca I 422. 6 7 3  2 3 6 5 2  3 
Ca II 3 9 6 .  847 2 5 1 9 2  2 2. 173&(SL), 2 .0488(SG), 2 . 1 0 2 9 ( N B S ) °  2 . 0911  + 0 .0379 

Mg I 2 8 5 .  213  3 5 0 8 7  3 
Mg II 2 7 9 .  553 35732 4 1. 4317 ( S L ) ,  1  .504(ADJS), 1 . 3 3 3 ( S G ) ,  1 .4066 + 0 .0773 

1.3578(NBS) 
Mg II 280 .  270 35652 2  2 .  870&CSL), 3 .0l6l(ADJS), 2.6649(SG), 2  . 8273  + 0 .154 Mg 

2.743(NBS) 

Pe I 252 .  285 3 9 6 2 6  9 
Fe II 2 5 8 .  5 8 8  38660  8 3. 4050(AS 1), 2.8658(BH/H) 3 .1354 + 0 .270 

Cd I 228 .  802  4 3 6 9 2  3 
Cd II 226. 502  44136 2 2 .  6 5 7 5 ( A S  2 ) ,  3 . 3 9 4 9 ( B S )  3 .0262 + 0 . 3 6 9  

Zn I 213. 8 6  46745 3 
Zn II 206 .  19 48481 2 3. 029()(AS 2), 2.5203(BS) 2 . 7747  + 0 .254 

^Numerals I,II and superscripts ( ),( ) denote neutral atom and first ion 
species, respectively. 

^Transition probability sources: ADJS = Andersen, ejfc aJ.. (85 ) ;  AS 1 = Assousa 
and Smith (86); AS 2 " Andersen and Sorensen (87); BH/H = Banfield and Huber (66) and 
Huber (88); BS = Bauman and Smith (89); NBS = National Bureau of Standards (90); 
SG = Smith and Gallagher (91); SL = Smith and Liszt (92). 
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to be compatible with the temperatures and densities consid

ered In this study. 

The ratio of the Ion number density to that of the 

neutral atoms Is given by (40) 

where, Z[T(R)] is the partition function for the radial 

temperature T(R). Partition functions for neutral atom and 

singly ionized species were calculated from the method 

suggested by Griem (36), which included a correction for the 

lowering of the ionization energy. The details of the 

partition function calculations and the Saha n^ computer 

program employed in this investigation are discussed in 

Appendix C. 

Stark broadening methods 

The theory and application of Stark broadening methods 

for the determination of n^ in plasmas has been discussed 

extensively (36,93-98). Atomic hydrogen lines are most 

frequently employed for these calculations because of the 

availability of extensive tabulations of Stark broadening 

parameters for the complete line profiles (36,96,98) and 

because the theory is somewhat simpler to apply and more 

accurate than that for multielectron atomic species. Griem 

(36,96) has also tabulated Stark broadening parameters for 

J (R) .  g .  z [T(R)] 
J°(R) gVx° Z°[T(R)] 

( 6 )  
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the emission lines of a number of other neutral atom and 

singly ionized species. 

line The H line (486,13 nm) was selected for n 
P  P  G  

calculations because; (a) it is free from spectral inter

ference by plasma components; (b) the range of half-widths 

anticipated (^^.0 to 5.0 A) and the relative intensities 

observed were of sufficient magnitude to allow accurate 

measurement at various observation heights in the plasma; 

(c) extensive Stark data were available for the complete line 

profile (96,98) encompassing a broad range of n^ values and 

temperatures; and (d) greater accuracy is generally associ

ated with Stark calculations for the line than for other 

atomic hydrogen lines. The theory developed by Griem (36), 

Kepple and Griem (95) and Griem (96) and the tabulated Stark 

parameters from Videl e;t al_. (98) were employed in these 

calculations. 

The Stark width for the line is related to n by (94-
p e 

96,98) 

fAxS..(R) 

" |2aj2.6l e)j 

where AX^^(R) = Stark half-width at radius R, 

= reduced Stark profile half-width 

parameter, 

0 = electrostatic unit of charge. 

Equation 7 cannot be used directly unless experimental line 
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profiles have been deconvoluted to account for Doppler and 

instrument broadening. This correction, on a half-width 

basis, is not a straightforward procedure. A simpler alter

native is to use pure Stark reduced profiles, S(a), at various 

n^ and temperature combinations (98) as base values and then 

apply convolution calculations to account for other broadening 

contributions. These calculations were accomplished as 

follows: (a) Doppler profiles were convoluted with the S(a) 

profiles (98) to yield Doppler corrected profiles, S^(a) and 

(b) the instrument profile was measured (99) and then convo

luted with the S^(a) profiles to yield the desired instrument 

and Doppler corrected Stark profiles, S(a^). This convolution 

procedure yielded a set of reduced half-widths, which 

could be compared directly with experimentally observed 

hejf-winths. AX°. (R). When these quantities were substituted 

2 
for AÀ 3^(R) and a in Equation 7 and the constants were 

'2 "2 

evaluated, the radial was given by 

,AX° (R) 
nu (R) = 7.9658 X 10 < —9 
e I ^ ̂  

N- -

3 / 2  

( 8 )  

A discussion of the details and accuracy of the convolution 

procedure and of the n^ computer program employed in this 

study is given in Appendix D. 

Ar I lines The Ar I 5^2.135 and 549-588 nm lines 

were also employed for effective n^ determinations; the Stark 

parameters given by Griem (36,96) were used in these 
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calculations. The parameters for n values and temperatures 

not listed were obtained by using the scaling procedure indi

cated in the description of these parameters (36,96). 

For neutral atom emitters the Stark half-widths are given 

approximately by (36,96) 

: 2w[l + 1.75 A (1-0.75 R')] (9) 

where w = electron impact width, proportional to n^, 

A = ion broadening parameter, proportional to 

R'' = ratio of the mean distance between ions, 

r^, to the Debye radius p^. 

The R" terra in Equation 9, which is a measure of ion-ion 

correlations and Debye shielding, is given by (36,96) 

r / p  =  1 . 8 2  ^  ( 1 0 )  
1  D  e  

where, k is the Boltzmann constant and other symbols have 

their usual meaning. Values of w and A are tabulated for 

Ar I lines by Griem (36,96) for n^ =10 era and tempera

tures of 2,500; 5,000; 10,000; 20,000; and 40,000 K. Stark 

half-widths were calculated from the w and A parameters given 

for the Ar I 542.135 nm line and for the 549.588 nm line in 

g 
references 36 and 96, respectively. These AX values were 

obtained for each line at the temperatures listed and for 
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from to 10^^ cm~^ in half-order steps by appropriate 

scaling of the tabulated w and A values (36,96). The Gaussian 

Q 
contribution to Ar I line half-widths, AX was calculated 

from the Doppler and Instrument profile contributions (99); 

a value of = 0.22 & was employed for-temperatures of 

T = 2,500 K to 10,000 K. 
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CHAPTER III: FACILITIES 

Experimental Facilities 

The experimental facilities, except as modified for this 

study, were adapted from those previously described by Scott 

et al. (100). The principal components of the equipment 

employed here are outlined in Table V and the modifications 

incorporated for this study are described below. 

The mechanism for positioning the impedance matching 

network was altered to provide for adjustment along the 

optical axis as well as providing the capability of precise 

horizontal and vertical positioning of,the plasma torch. To 

achieve the latter the impedance matching network and plasma 

torch were mounted on a stand which allowed movement of the 

torch vertically, horizontally (laterally), and parallel to 

the monochromator optical axis. The vertical and horizontal 

movements could be read to ± 0.05 mm on a vernier scale. 

The parallel torch movement and lens positioning along the 

optical axis were accurate to ± 0.5 mm. A He-Ne laser 

(A = 532.8 nm, C. W. Radiation Inc., Mountain View, CA) was 

employed for optical alignment and to check the validity of 

the horizontal and parallel movements of the torch. The 

lens aperture and the monochromator entrance slit were 

limited to 3 mm openings to achieve compliance with the 

criteria necessary for Abel inversion calculations. 
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Table V. Experimental facilities and operating conditions 

Plasma Generation 

Radlofrequency generator 

Impedence matching network 

Plasma torch 

coolant tube 

plasma tube 

Fixed frequency (27.12 MHz), 1.5 
kW crystal controlled oscillator 
and air-cooled amplifier (Inter
national Plasma Corporation, 
Hayward, CA). A feedback 
circuit was added to this facil
ity to maintain constant forward 
power in the transmission line 
(type RG-8U coaxial cable) to 
the impedence matching network 
by controlling the screen 
voltage of the oscillator. 
Forward power in the transmis
sion line was measured with a 
Thruline Wattmeter (Model 43, 
25OO-H Element, Bird Electronics 
Corp., Cleveland, OH). 

Variable (30-turn) vacuum capac
itor coupling circuit (Inter
national Plasma Corporation, 
Hayward; CA) as described In 
reference 100. Copper, two-
turn, water-cooled load coil, 
5 mm o.d. 

Concentric quartz tube arrange
ment similar to that described 
previously (101). Inner and 
outer tubes were clear precision 
quartz tubing (Wllmad Glass Co., 
Buena, NJ). Spacing between 
inner and outer tubes and, 
position of aerosol Injector 
tube accurately set with a 
machined brass alignment plug 
during torch construction. 

Outer tube, 20 ± 0.025 mm o.d., 
18.05 ± 0.025 mm i.d. 

Inner tube, 15 ± 0.025 mm o.d., 
13 ± 0.025 mm i.d. 
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Table V. (Continued) 

aerosol tube Clear fused quartz, 6 ram o.d., 
4 mm l.d., tapered orifice, 
1.5 mm l.d. 

Argon flow rates Coolant; 12.5 &/min. 
Plasma; Optional, used when 

igniting the plasma to 
prevent "burning" the 
plasma and aerosol 
tubes. 

Aerosol; 1.0 £/min and 1.3 &/ 
rain. 

Ignition Tesla coil ignition with no 
aerosol flow and coolant-plasma 
flow of approximately 15 £/min. 
After the plasma was formed the 
tesla coil was shut off and 
flow rates were adjusted to 
operating values. 

Aeroaol Generation 

Nebulizer Right-angle pneumatic, uptake 
approximately 2.5 mJl/min at 
1.0 &/min aerosol flow, 
construction details given in 
reference 102. 

Aerosol chamber Dual tube aerosol chamber (100) 
and (later) a simpler Teflon and 
glass chamber (103) • The 
simpler chamber reduced the 
clear-out time between sample-
background readings. 
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Table V. (Continued) 

Spectroscopic Equipment 

Spectrometer 

Grating 

Slits 

Reciprocal linear 
dispersion 

Detector 

Optical transfer system 

Amplifier 

Integrator 

Recorder 

0.5 meter, Ebert mount, scanning 
monochromator (Jarrell-Ash 
Division, Fisher Scientific Co., 
Waltham, MA, Model No. 82000). 

Il80 rulings/mm, blazed at 
2500 A, first order. 

Fixed, 15 ]im entrance and exit, 
entrance slit height masked to 
3 mm. 

16 i/mm, first order. 

EMI 6256B photomultlpller, S-13 
response (Gencom Division, 
Emitronlcs, Inc., Plainvlew, NY) 

Plasma emission focussed by I6 
cm focal length x 5 cm diameter 
plano-convex, fused quartz lens 
with aperture limited to 3 mm 
by adjustable iris diaphragm 
concentrically mounted on the 
lens holder. Lens positioned at 
twice the focal length (2f) from 
the entrance slit and plasma 
central axis for each wavelength 
region studied. 

T,1 near pinnammeter with zero 
suppression (Kelthly Instruments, 
Cleveland, OH, Model 4l7) 

Digital readout system, hard copy 
only (Infotronlcs, Houston, TX, 
Model CRS-SO). 

X-Y recorder (Moseley Division, 
Hewlett-Packard, Pasadena, CA, 
Model 7001-A). 
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The power supply to the filament of the RP generator 

power tube was modified to accommodate time-independent 

relative intensity measurements. With reference to this 

modification it is worth noting that many high frequency 

generators produce a sinusoidal 60 Hz modulation on the 

forward power high voltage envelope; this was found to be 

true for the radio-frequency (RP) generator employed in this 

investigation. Consequently, emission from analyte and Ar I 

lines observed in the plasma displayed similar 60 Hz modu

lations; the peak-to-peak magnitudes of these modulations 

were a sensitive function of the excitation energies. 

Subsequently, the relative intensities obtained represented 

time-averages over the integration period employed for the 

intensity measurements; these intensities yielded erroneous 

time-averaged excitation temperature values. 

Experimental verification of this effect is provided by 

the oscilloscope tracings shown in Figure 1 for the Pe I 

381.584 nm and 382.444 nm lines; these neutral atom lines 

possessed excitation energies of 38,175 cm ^ and 26,140 cm 

respectively. The tracings shown in Figure 1 were obtained 

by filtering the signal current taken directly from the 

photomultiplier tube output. Trace C for the higher exci

tation potential line clearly displays greater intensity 

sensitivity to forward power modulation than does the lower 

excitation potential line shown in trace B. Consequently, 
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Figure 1. Oscilloscope tracings showing emission 
intensity modulation with a 60 Hz ripple 
on the forward power to the plasma: 
(A) dark current, (B) Pe I 382.444 nm, 
(C) Pe I 381.584 nm 
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the intensity ratio of the two lines was significantly 

different in the peak and valley regions of the oscilloscope 

tracings. The peak and valley relative intensities (above 

dark current), intensity ratios, and the corresponding two-

line temperatures calculated from these ratios with two sets 

of transition probabilities are summarized in Table VI. 

Because peak values were clearly ^15% higher than the valley 

temperatures, erroneous time-averaged excitation temperatures 

were obtained under these conditions. These temperatures 

were biased by the excitation energy range of the lines 

employed. The actual time-independent temperatures were 

obtained when the 60 Hz ripple was eliminated from the 

generator power tube filament. This was accomplished with 

the DC power supply which by-passed the generator ac_ supply, 

the source of the 60 Hz modulation. With the elimination of 

the 60 Hz ripple on the RP forward power, a smaller 120 Hz 

sawtooth ripple of '^9% peak-to-peak magnitude, remained. 

The 120 Hz ripple was- reduced to ~3% near maximum power and 

to <1% at 900 W by increasing the generator high voltage 

filtering network capacitance from 4yF to 12ijP. For the 

latter the reflected power was reduced from '^^10 W to ~1 W 

when the 60 Hz ripple was eliminated. 

Computer Facilities 

Off-line computer calculations were handled by PLl and 

FORTRAN IV programs which were processed on the IBM 370/158 
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Table VI. Intensities, Intensity ratios, and two-line 
temperatures for Fe I lines in peak and valley 
regions with 60 Hz modulation on the forward power 

Region Relative Intensity Ratio^ Temperature (K) 

Pe I 381.584 Fe I 382.444 R^ BH 

peak 3.3 1.4 0.42 6500 5600 

valley 1.3 0.85 0.65 5600 4900 

^Intensity ratio, I382.444/^381.584' 

^Transition probability data: BH = Banfield and Huber 
(66); R = Reif (30). 
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and M/65 facilities at the Iowa State University Computations 

Center. Remote processing was accomplished with the facili

ties located at the Ames Laboratory Computer Garage. The 

expert assistance provided by the staff of the Ames Laboratory 

Computer Service Group was invaluable during the writing and 

debugging of a number of the programs employed in this 

investigation. The ASR 35 teletype in B28 Speddlng Hall was 

employed to process CPS/PLl Jobs which were mainly used for 

disk data file management. A Digital Equipment Corporation 

(DEC) PDF 8/e minicomputer with 8K of core was employed for 

some preliminary on-line profiling experiments on a different 

plasma facility than the one used in this study. The 

characteristics and potential of this DEC PDF 8/e plasma 

system will be briefly discussed in a later chapter of this 
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CHAPTER IV: EXPERIMENTAL PROCEDURES 

Intensity Measurements, Lateral Profiling, 

and Abel Inversions 

The analyte thermometric species (Fe I) was nebulized 

into the plasma (100,102,103) as a 150 yg Pe/mH solution. 

The relative intensities of the Fe I emission lines listed in 

Table II and those for the three-line set from Table I were 

measured at increasing lateral displacements (0.4-1.0 mm 

intervals) from the axial channel of the plasma until the 

signals could no longer be detected. Three to four data 

points on the opposite side of center were also collected to 

assure accurate location of the vertical symmetry axis of the 

plasma. The latter was taken at the position of the peak of 

the sjiTjnetric bell-type later-al distributions after a smooth 

curve was drawn through the original data points. Spectral 

backgrounds at each emission line of interest were measured 

while delonlzed water was aspirated into the plasma. The 

signals and spectral backgrounds were integrated over an 

8-second period. The net relative intensities used In the 

final calculations were the averages of three to five back

ground corrected values. These relative intensities were 

plotted V2' displacement to construct a lateral profile for 

each Fe I line of Interest. Relative Intensity measurements 

were taken for all lines at a given displacement before pro

ceeding to the next lateral observation zone. 
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Complete lateral profiles from one edge of the plasma 

through the geometric center to the opposite edge were 

obtained in a similar fashion for the neutral atom and first 

ion lines listed in Table IV. The center of the bell-type 

profiles so obtained was taken at the peak of the distribu

tion, Complete lateral profiles with water nebulized into 

the plasma at an aerosol carrier gas flow of 1.0 &/mln were 

also obtained for the Ar I spectral lines listed in Table III. 

The spectral backgrounds for these Ar I lines were obtained 

from the continuum emission adjacent to the lines. The 

center of the toroidally-shaped lateral distributions 

obtained for these Ar I lines was taken as the midpoint 

between the off-axis peaks. 

The Cremers and Birkebak Abel Inversion method described 

previously was used to obtain spatially resolved radial 

intensity distributions from the corresponding lateral pro

files. The right and left portions of the complete lateral 

intensity profiles discussed above were inverted separately 

for comparative purposes. 

Temperature Calculations 

The slope method described previously (Equation 3) was 

used to calculate radial excitation temperature distributions 

from the corresponding radial intensity profiles. The temper

ature profiles so obtained for the different thermometric 
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species, Fe I and Ar I, and for different Fe I line sets and 

transition probabilities are compared later in Chapter V of 

this thesis. 

Electron Number Density from Saha-Eggert's 

Ionization Calculations 

Equation 5 was used to calculate radial n^ values from 

the corresponding radial intensities for the atom/ion line 

combinations and average (g°A°X^/g^A^A°) ratios given in 

Table IV. Radial number density ratios (n^+(R)/n^Q(R)) were 

obtained from Equation 6 for the atom/ion line combinations 

listed in this table. A listing of the source statements of 

the computer program employed in these calculations is given 

in Appendix C. 

Electron Number Density from Stark 

Broadening Calculations 

H. line 
p 

Wavelength scans over the line profile were obtained p 

at successive lateral displacements across the plasma dis

charge. First, each scan was divided into '^25 constituent 

wavelengths spanning the entire interval of the line pro

file. Second, lateral profiles were constructed for each 

constituent wavelength and the spectral background was 

interpolated from the continuum emission beyond the H_ line 
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wings. Third, radial intensity profiles were obtained from 

the corresponding lateral profiles for each constituent wave

length by employing the Abel inversion method described 

previously. Finally, the profile at each radial position 

was reconstructed from the radial Intensity data; the radial 

half-widths, (R), were measured from these profiles. 
^ p 

A FORTRAN IV computer program was written to perform the 

n^ calculations. The details of this program are discussed 

and a listing of the source statements is given in Appendix 

D. The computer calculations were performed as follows. 

First, a matrix of V8_ .  log^g  T values was constructed 

from the instrument and Doppler corrected reduced Stark half-

width data (98) for n^ from 10^^ to 10^^ cm ^ in half-order 

steps, and for temperatures of 2,500; 5,000; 10,000; 20,000; 

and 4û,ûûu K. The values uuLained are snown in Figure 2. 

Second, the value of AA°,(R) obtained as described above was 

inserted into Equation 8 to evaluate the [AÀ°,(R)]^^^ term. 
H 

Third, [o^,, n (R)] pairs were calculated by appropriate 
^ G 

interpolation methods (98) for the Fe I excitation 

temperature, T(R), at radius R. Fourth, an approximate 

[a^^]Q was selected and inserted into Equation 8 to calculate 

a zero-order approximation to the electron density, [ngCR)]^. 

Fifth, a first-order [a/,], value was Interpolated from the 
H -L 

c'lj vs. n^(R) relationship and from the value of [n^fR)]^. 

This value for was used in Equation 8 to give a 
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Figure 2. Reduced Stark profile half-widths, 

corrected for Doppler and instrument 

broadening plotted vs. log, „ T for elec-
I P  1 6  

tron densities from 10 to 10 cm for 

the Hg 486.13 nm line 
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first-order electron density, [n^CR)]^. Finally, this 

procedure was repeated iteratively until a self-consistent 

pair of n^(R)] values was obtained to the desired 

accuracy. 

Ar I lines 

Wavelength scans over the lateral (effective) Ar I line 

profiles were obtained at the central axis of the plasma 

discharge. The Ar I lines were assumed to have Voigt profiles 
O p 

so that the tabulated half-width ratios (93); i.e., AX ^/AX ^ 

g 
and AX ^/AX^, could be used to calculate the expected experi

mental half-width, AX^, at the appropriate n^ and temperature 

g 
combinations. The AX ^/AX^ ratios were plotted as a function 

S G 
of the AX ^/AX ^ ratios for the values given in reference 93-

Q 
Equation 9 was used to calculate the AX ^ values and the 

AX^^/AX^^ ratio was obtained from the Stark half-width and 

G S 
the known value for AX The corresponding AX ^/AX^ ratio 

was interpolated from the plot and the AXj^ value was calcu

lated from this ratio. This procedure was used to obtain 

AX, values for each Ar I line at each n and temperature 
h K 

combination considered. The semi-log plots of AX^, v^. log^^ T 

which were constructed for each line in half-order steps for 

n^ from 10^^'^ to 10^^ cm ^ are shown in Figure 3. The n^ 

corresponding to an experimentally measured Ar I line 

half-width was then obtained by linear interpolation between 
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Figure 3. Doppler and instrument profile corrected 

Stark half-widths for Ar I lines, 

AÀ, v^. log. n T for electron density 

frl 10"-5 to io« om-3 
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the values plotted in this figure. Effective temperatures 

were estimated for observation heights at which no measure

ments were obtained, I.e., below 15 mm. 
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CHAPTER V: RESULTS AND DISCUSSION 

Symmetry 

The bell-type lateral Intensity distributions which were 

obtained for Pe I thermometric emission lines complied well 

with the circular symmetry requirement discussed in Chapter 

II. The bell-type profiles of the emission lines given in 

Table IV for Saha-Eggert's n^ calculations were also in com

pliance with this symmetry criterion. In contrast, the 

toroidally shaped Ar I lateral intensity distributions for 

the thermometric lines given in Table III showed deviations 

from symmetry primarily in the off-axis regions. The lateral 

intensity distributions for the wavelength constituents of 

the Hg line profile displayed similar toroidal shapes and 

similar- deviations from circular symmetry. The different 

lateral distributions are discussed in the following sections. 

Intensity Distributions of 

Analyte Lines 

Figure 4 shows typical lateral intensity profiles for 

the Zn, Fe, and Ca atomic and ionic emission lines listed in 

Table IV. It is seen that bell-type intensity distributions 

were obtained for the wide range of excitation and ionization 

energies represented by the spectral lines of these species. 

Similar profiles were obtained for the Mg and Cd atomic and 
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Plgure k. Lateral profiles for Saha species at 15 mm, 
1000 W and 1.0 H/mln aerosol carrier gas flow 

without with 
Na 6900 ug Na/m& 

1 0  wg Zn/mi: Zn II 2 0 6 . 1 9  nm (  —0—) (—• —) 
Zn I 2 1 3 . 8 8  nm ( — X—) ( — 4" —) 

1 5 0  yg Pe/mJi : Pe II 258 .588  nm ( —0—) (—• —) yg 
Fe I 2 5 2 . 2 8 5  nm ( — X—) (— 4" —) 

1 0  yg Ca/m£: Ca II 396.847 nm ( —0—) (—Q —) yg 
Ca I 422.673 nm ( (—+ —) 
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Ionic lines from Table IV. The corresponding Abel inverted 

radial intensity profiles showed similar bell-type behavior. 

The addition of a large excess of an EIE should, under 

equilibrium conditions, suppress ionization of the analyte 

species. The trends of the Ca profiles in Figure 4 tend to 

support this interpretation, i.e., the atomic line is 

slightly enhanced while the ionic line is relatively more 

depressed. However, the axial depressions in the atomic 

line profiles of Pe and Zn suggest ionization suppression 

is not the dominating process. This suggestion is supported 

by the data in Table VII which lists ion/atom lateral or 

"averaged" intensity ratios at the plasma central axis for 

the line profiles shown in Figure 4 and for the Mg and Cd 

lines listed in Table IV. Again, the existence of some 

analyte ionization suppression is indicated by the deer-ease 

in these ratios upon the addition of Na to the plasma but. 

In comparison to flamesj the suppression is surprisingly 

small (104). These unusually small interference effects 

were first reported by Larson ejt al. (103) and confirmed 

later by Mermet and associates (105) and by Boumans and 

de Boer (Ic). 

Further evidence that ionization suppression plays only 

a minor role at least under some combinations of experimental 

conditions is found in the radial relative intensity profiles 

shown in Figure 5 for the Fe I 382.043 ran emission line. 

These profiles clearly show that Fe I radial intensity 
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Table VII. Ion to neutral atom 
lines of Zn, Cd, Pe, 
added Na 

lateral intensity ratios for 
Mg and Ca with and without 

Species I* / I °  Ratios^ 
(lVl°)Na 

Without Na With 6900 yg Na/m& ( I+ / I ° )  

Zn 0.22 0.18 0.82 

Cd 0 .88  0.67 0.76 

Pe 4.6 

CO m
 0 .83  

Mg^ 

O
 

1—1 

9.9 0 . 9 5  

Mg° 5.3 

1—
1 LO 

0 .96  

Ca 85 70 0.82 

^Relative intensity r 
Intensity. 

atio. ion line Intensit y/atom line 

^lon line, Mg II 279. 553 nm. 

^lon line, Mg II 280. 270 nm. 
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Figure 5. Radial intensity distributions for the Pe I 
382.043 nm line at lOOOW for three observation 
heights and two aerosol carrier gas flows; 
150 yg Pe/m£ (—0~) and I50 ug Fe/mî, + 
6900 jig Na/m& (—A—) 
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distributions are essentially unchanged upon addition of Na 

as an EIE at the lower aerosol carrier gas flow but, are 

enhanced about two-fold at the higher flow. 

These observations imply that greater interferences due 

to the presence of an EIE would be expected to occur at 

higher aerosol carrier gas flows when lateral intensities are 

measured under analytical experimental conditions. Indeed, 

Larson e^ al^. (103) and Boumans and de Boer (Ic) have 

established that this is so. It is important to note that 

the combination of argon carrier gas flow of ~1.0 &/min and 

an observation height of ̂ 15-20 mm corresponds to the values 

of these parameters that lead to excellent powers of detection 

and a low degree of ionization and other interelement inter

actions (lb,lc,103). 

Intensity Distributions of 

Ar Lines 

The typical toroidal lateral and radial relative inten

sity distributions for the Ar I 425.936 nm line reproduced in 

Figure 6 clearly show that both the lateral and radial 

profiles are asymmetric, as evidenced by the larger left side 

peak in the lateral profile and by the disagreement between 

right and left side intensities in the central region of the 

radial profile. These observations are typical for Ar I 

profiles, even though elaborate precautions were taken in 

order to assure symmetry in the construction of the plasma 
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Figure 6. Toroidal lateral and radial relative intensity 
distributions for the Ar I 425.936 nm line at 
15 nim, lOOOW and 1.0 £/min aerosol carrier gas 
flow 
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torch. Evidently very critical adjustments beyond present 

fabrication technology are required for precise control of Ar 

flow patterns. Asymmetry in the magnetic and electric fields 

induced by the load coil and in the interaction of these 

fields with the Ar plasma support gas may also contribute to 

asymmetry in the Ar I lateral profiles. The toroidal lateral 

and radial relative Intensity distributions which were ob

tained for the constituents of the line profile displayed 

similar asymmetric characteristics. Other investigators have 

also reported similar problems with asymmetric toroidal 

lateral Intensity distributions when Abel inversion methods 

have been applied to these profiles (2a,15,16,45). These 

results suggest that further refinements in torch and coil 

design should be explored ultimately; these studies were not 

considered imp or L an u enough to justify their- inclusion in the 

present context. 

Temperature Profiles 

The excitation temperatures obtained from Equation 3 for 

analyte (Fe I) and support gas (Ar I) thermometric lines are 

plotted in Figure 7. It is seen that the excitation tempera

tures calculated from different sets of transition probabill-

ities (30,66567) for the Fe I three-line set (From Table I) 

and for the expanded ten-line set (given in Table II) agree 

to within '\,3% in the axial channel region and within ± 10% 
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Figure 7. Radial excitation temperatures at 15 mm, 
lOOOW and 1.0 &/mln aerosol carrier gas flow. 
Ar I elght-llne with Corliss and Shumaker (77) 
transition probability data (—O—); Fe I 
ten-line with Huber and Parkinson (67) data 
(—X—) and with Relf (30) and Banfleld and 
Huber (66) data (—O—)à Pe I three-line with 
Relf data (—A—) and with Banfleld and HuDer 
data ( — O—) 
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In the wings. The temperature data obtained from the Ar I 

eight-line set (listed in Table IV) are not that encouraging, 

even though the temperatures obtained with the transition 

probability data given in references 75-77, and 80 agreed to 

within ± 3%' The uncertainty in the Ar I data as represented 

by the scatter of the points in the radial temperature pro

file, and the disagreement with the Pe I temperatures, are 

reconcilable. First, the asymmetric character of the 

toroidal Ar I lateral intensity distributions (see Figure 6) 

introduces large uncertainties into Abel inversion calcu

lations, especially for the axial region (2a,15,16,18,45). 

Second, errors in relative intensity measurements are 

amplified considerably when the selected lines possess a 

limited range of excitation energies, as shown by the data 

plotted in Figure 8. These plots, which were calculated by 

methods discussed elsewhere (2a,81,106), clearly show that 

the Ar I temperature calculations are subject to an approxi

mate five-fold larger uncertainty than the Pe I values for 

the same AI/I measurement error. 

In view of the good agreement between the Pe I tempera

tures and the large uncertainties associated with the Ar I 

temperatures henceforth, only the temperatures calculated 

for the Fe I three-line set from Table I will be considered. 

These temperatures, which were obtained at two aerosol 

carrier gas flows and with and without the presence of rela

tively high concentrations of an EIE, are shown in Figure 9. 
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Figure 8. Percent uncertainty in temperature as 
a function of percent uncertainty of 
intensity for typical Fe I and Ar I 
lines employed in temperature 
calculations 
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Figure 9. Radial Pe I excitation temperatures at 
lOOOW for three observation heights and 
two aerosol carrier gas flows; 150 yg 
Fe/m£ (—O—), 150 yg Pe/mS, + 6900 yg 
Na/iriX, (—(m—) 
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Examination of this figure reveals several Important features. 

First, the excitation temperature distributions obtained at 

the respective aerosol carrier gas flows and observation 

heights are not significantly changed upon addition of Na as 

an EIE. Second, the temperatures for the higher flow are 

significantly lower (400 to l400 K) than the corresponding 

temperatures for the lower flow. Third, for the higher 

carrier-gas flow, the central zone temperatures at 15 mm are 

relatively low and the off-axis peak is much more pronounced 

than for the lower flow. Finally, central zone temperatures 

at the lower flow are essentially unchanged from 15 to 20 mm 

but decrease by about 10% at 25 mm. These results correlate 

well with the empirical observations of others at this 

laboratory (103,107) namely, that the "compromise" experi-

rrienbal conuitions which yield excellent powers of detection 

and also yield a high degree of freedom from interelement 

effects are ~1.0 &/min aerosol carrier gas flow and ^15-20 mm 

observation height. Figure 9 clearly shows that there is 

essentially no decrease in temperature from 15 to 20 mm yet 

additional residence time is gained for desolvation, atomi-

zation, and excitation of the analyte. These profiles also 

reveal the drastic temperature drop at the higher flow which 

is undesirable from excited state population and residence 

time considerations. The substantial temperature drop 

between 20 and 25 mm for the lower flow is also undesirable 

from the excited state population standpoint for most species. 
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Boumans and de Boer (le) have reported different 

"compromise" operating conditions which were based on their 

observations of interelement effects and detection limits 

obtained for their plasma system. These authors suggested 

experimental conditions of 1.3 to 1.5 &/min carrier gas flow 

and 15 mm observation height at 700 W power input and, 1.5 to 

1.7 &/min carrier gas flow at 20 mm height for a power input 

of 850 W. It is worth noting that the relative intensity 

data in Figure 5 and the temperature data in Figure 9 combined 

with the observations of Larson e;t al^. (103) suggest that an 

aerosol carrier gas flow of 1.3 Jt/min is undesirable for 

plasma operating conditions at this laboratory because greater 

Interelement effects are observed at this flow. 

Electron Number Density Profiles 

Because the temperature profiles shown in Figure 9 

exhibited definite off-axis or toroidal peaks, it was of 

particular interest to determine whether the n^ profiles at 

this observation height reflected these temperature distri

butions. The profiles shown in Figure 10 indeed show similar 

off-axis peaks, but they reveal several other features worthy 

of comment. First, the Stark broadening n^ profiles are a 

factor of 30- to 50-fold greater than the Saha-Eggert's 

ionization profiles. Second, the profiles were not sig

nificantly changed upon addition of Na as an EIE. Finally, 
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Figure 10. Radial electron density distributions at 
lOOOW, 15 mm and 1.0 £/mln aerosol carrier 
gas flow for Ho Stark broadening (—X—) 
and Saha calculations; 10 yg Ca/m& 
(—O—), 150 VS Pe/my. ( — n—). 10 ug 
Mg/mi (—A—), 10 yg Cd/m% (—+—), 
10 yg Zn/m£ (—#—) 
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for the central axial region the Saha n^ profiles agree to 

within a factor of three for the five different analyte 

species. Considering first the disagreement among the Saha 

n^ values, the range of values obtained is not particularly 

surprising in view of the magnitude of potential errors 

involved. This range may reflect inherent errors in the 

published transition probability data for the lines employed 

or varying degrees of n^ contribution by the analytes because 

of their different degrees of ionization in the plasma. 

These uncertainties plus those accumulated in the lateral 

intensity measurements and Abel inversion calculations may 

account for up to a factor of two error in the Saha-Eggert's 

n^ values. A 10% uncertainty is generally associated with 

theoretical Stark data for the line (36,93-96,98,99) • 

Accuiiiulaued uncertainties from convolution calculations, 

instrument profile measurements, and Abel inversions account 

for ^30% error in the radial half-width determinations. 

These considerations suggest that error may be associated 

with the n^ values determined by Hg Stark broadening calcu

lations. Although the errors in both sets of measurements are 

substantial, they are clearly inadequate in accounting for the 

factor of 30- to 50-fold difference between the n^ values 

determined by the Saha and Stark methods. These large 

differences suggest that LTE may not prevail for the plasma 

operating conditions employed in this work, a subject that is 

discussed later in this chapter. 
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It is worth noting that the Stark broadening n^ values 

shown in Figure 10 are about a factor of five-fold smaller 

than the similar measurements reported by Mermet (17a) and are 

about two-fold smaller than the continuum calculations 

reported by Kornblum and de Galan (l6). However, Kornblum 

and de Galan reported Saha n values obtained with Mg atom/ion 

lines that were two to three orders of magnitude greater than 

those obtained here and those reported by Mermet (17a). The 

effective Saha n^ values reported by Mermet were essentially 

identical to the similar values obtained here and reported 

later in this chapter. 

Because the Saha n values obtained from the Mg atom/ion 

line pairs (Table IV) represented a value near the average 

obtained for all the species plotted in Figure 10, Mg was 

selected for additional n measurements at nifferent obser

vation heights. These line combinations possessed several 

other desirable advantages; namely, (a) four sets of trans

ition probability data which were in good agreement, were 

available for both Mg atom/ion line combinations, (b) the 

lines were free from spectral interference, (c) the excitation 

energies of the atomic and ionic lines were well matched, and 

(d) the lines were in close wavelength proximity so that the 

instrument response with wavelength could be assumed constant. 

The results of n^ measurements on the Mg atom/ion line com

binations are shown in Figure 11. Surprisingly, the n 
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Figure 11. Radial Saha-Eggert's electron density distri
butions at 15, 20, and 25 mm for Mg atom/ion 
line combinations; 10 yg Mg/m& (—O—, —•—, 
—A—), 10 yg Mg/m& + 6900 yg Na/m£ (—9—, 
— •—, —•—) 
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profiles at 15 and 20 mm observation heights show little 

change upon the addition of an EIE to the plasma. The primary 

change in the 25 mm height profile Is in the wing region, 

where there is an enhancement significantly greater than the 

experimental error. It is also evident that the toroidal n 

distribution at 15 mm disappears at 20 and 25 mm, being 

replaced at the latter heights by bell-type profiles which 

are relatively uniform for the central 4 mm of the plasma. 

The change in n in this central axial zone upon the addition 

of Na is insignificant. The surprisingly small changes in n^ 

and temperature profiles at 15 and 20 mm upon the addition of 

Na as an EIE suggest that changes in the total composition of 

the sample do not affect the radial excitation temperature 

nor degree of ionization of analyte species in a dominant 

manner. The significant increase in n^ in the vrings of the 

?5 mm profile upon addition of Na as an EIE suggests that 

ionization suppression may play a role. if a significant 

fraction of the analyte diffuses into this region. These 

results are in harmony with empirical observations reported 

by Larson e^ a^. (103) and by Boumans and de Boer (Ic) which 

indicated low levels of interelement effects at low obser

vation heights (15 to 20 mm) and increased effects higher in 

the plasma. 

The radial n.^^+/n^gO profiles obtained from Equation 6 

for the Mg atomic and ionic lines listed in Table IV are given 

in Figure 12. With consideration of potential errors, the 
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H'igure 12, Radial number density ratios, 

at lOOOW and 1.0 &/mln aerosol carrier gas 
flow for Mg lines employed in electron 
density calculations; 10 yg Mg/m& at 15 mm 
(—Q—), 20 mm (—O—)> and 25 mm (—A—)j 
10 yg Mg/m& + 6900 yg Na/m& at 15 mm 
(—Q—), 20 mm (—X—)', and 25 mm (—A—) 
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ratios are essentially unchanged upon addition of Na as an 

EIE. These profiles also clearly show that Mg is more than 

90% ionized in the central axial zone of the plasma at all 

observation heights. The radial n^+Zn^^o ratios which were 

obtained for the other species given in Table IV are listed 

in Table VIII. The decrease in these ratios upon addition 

of Na to the plasma indicates the existence of some analyte 

ionization suppression but the degree of this suppression is 

much smaller than that commonly observed in flames (104). 

The data in this table also clearly show the high degree of 

ionization of analyte species in the central axial region of 

the plasma. In particular, Ca is more than 99% ionized and 

Zn more than 50% ionized even when a high concentration of 

an EIE is present in the plasma. These results correlate 

well with recent empirical observations at this laboratory 

which have been made on a direct-reading polychromator 

plasma system that has been in daily use for three years. 

The experience with this Instrument (107) has indicated that 

superior powers of detection may be obtained with the ionic 

lines of many analytes particularly those elements with low 

ionization energy. Indeed, the fact that many of the most 

sensitive lines of these elements originated from singly 

ionized species was recorded by Dickinson and Fassel (IO8) 

in 1969 and later by Souilliart and Robin (109). In view of 

these observations it is curious that Boumans and de Boer (Ic) 
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Table VIII. Radial Ion to atom number density ratios, ny+(R)/nyo(R), for Zn, Cd, Pe 

and Ca with and without added Na at lOOOW, 1.0 2/mln, and 15 mm height 

Without Na With 69OO yg Na/mil 

Radius (mm) Zn Cd Fe Ca Zn Cd Fe Ca 

0.0 2.1 6 . 2  18  610 1.5 4.4 15 300  

0 . 5  2.1 6 • 2 18 590  1.5 4.4 15 300 

1.0 2.1 5.9 17 540 1.5 4.5 15 310 

1.5 2.0 5.2 16 440 1.5 4.6 15 280 

2.0 1.9 5.0 16 430 1.5 4.6 16 320 

2.5 1.9 4.8 16 410 1.5 4.6 15 340 

3.0 1.8 4.6 15 310 1.5 4.6 15 320 

3.5 1.8 4.2 15 380  1.4 4.6 13 310 

4.0 1.8 3.5 14 390 1.5 4.6 12 260 

4.5 1.9 3.0 14 190 1.4 4.9 11 230 

5.0 1.9 2.7 13 190 1.4 4.9 8 . 6  240 

5.5 1.9 

0
0
 on 

10 170 1.0 4.3 7.1 170 

6.0 2.0 2.9 8.8 160 0.3 4.2 4.9 100 

6.5 — " m — — — 0.8 4.3 4.5 100 
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were surprised to rediscover this fact; namely, that the Ion 

lines of the alkaline earth elements yielded far better 

detection limits than the neutral atom lines for their 

"compromise" plasma operating conditions. 

Additional documentation that n^ do not change upon 

addition of an EIE is found In the effective (npnlnverted) 

half-widths of the and Ar I line profiles shown in Table 

IX. This observation was confirmed by the effective n^ values 

obtained from these Stark broadening measurements and those 

obtained from Saha-Eggert's calculations for Mg lines which 

are plotted in Figure 13. The Stark broadening n^ values for 

the H and the two Ar I lines are essentially identical at 
p 

the various observation heights and, in harmony with the Saha 

n values, did not change significantly when the EIE was 

added to the plasma. In agreement with the radial measure

ments plotted in Figure 10, the effective Saha values are 

30- to 50-fold smaller than the Stark broadening n^ values. 

Analyte Excitation 

The large differences between n^ values calculated from 

Stark broadening methods and those obtained from Saha-

Eggert' s ionization considerations (Figures 10 and 13) may be 

interpreted to support the earlier stated conclusion that LTE 

does not exist for the plasma operating conditions employed 

in this investigation. From observations quite similar to 
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Table IX. Effective half-widths^ of and Ar I lines measured at the plasma axis 

for lOOOW forward power and 1.0 Z/mln aerosol carrier gas flow 

Observation 
Height (mm) 

Ar I 542. 

Without Na 

1 3 5  nm 

With Na^ 

Ar I 549. 

Without Na 

5 8 8  nm 

With Na 

Hg 486.13 

Without Na 

nm 

With Na 

2  2 . 3 6  2.49 1.79 1 . 8 8  5.47 5.25 

5 H
 

C
O

 
C

O
 

2 . 0 1  

0
 

H
 1.40 4.49 4.16 

10 1 . 0 5  H
 

0
 

0 . 8 0 8  0 . 8 5 1  2 . 6 3  2,74 

15 0 . 6 7 4  0 . 6 5 6  0 . 5 6 5  0 . 5 6 8  2 . 0 8  2 . 0 8  

20 0 . 5 2 , 2  0 . 4 8 7  0.434 0.435 1.53 1.59 

2 5  0 . 4 3 2  0 . 4 4 3  0.346 0.348 1 . 1 5  1.15 

^Half-widths expressed in units 

^6900 yg Na/m£ added to the pla 

of Angstroms 

sma. 

(%), 10 Â = 1 nm. 
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Figure 13. Effective electron density at lOOOW and 
1.0 &/mln aerosol carrier gas flow for 
several observation heights. Stark 
broadening with deionized water nebulized; 
Hg 486.13 nm (—Q—), Ar I 542.14 nm 
(—D—)j Ar I 549.59 nm (—A—)• Stark 
broadening with 69OC yg nebulized; 
Hg 486.13 nm (—#—), Ar I 542.14 nm 
(— *—), Ar I 549.59 nm (—+—). 
Saha-Eggert's ionization; 10 ug Mg/m£ 
(—O—), 10 yg Mg/m£ + 69OO yg Na/m& 
(—•—) 
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those reported in this dissertation, Jaroz e_t aJ^. (2b) and 

Mermet (17) have in fact concluded that LTE does not exist 

for their plasma operating conditions. Mermet (17b) has 

suggested that I metastables are involved in analyte exci

tation through Penning ionization reactions, and that Ar II 

levels may also be involved through a similar process. Robin 

and Trassy (110) observed stimulated emission for resonance 

lines of A1 and Ti below a critical concentration while above 

this concentration atomic absorption prevailed. These au

thors suggested that the observation of this phenomenon indi

cated the absence of LTE in their 40 MHz discharge. The cal

culations of Hey (111) and Cillars et al. (112) on the n_ 

criteria necessary to ensure LTE suggest that low lying meta-

stable levels play a role in population of excited states for 

Lue specles considered. Indeed, energy transfer mechanisms 

involving rare gas metastables are well known and are ob

served in many classes of low pressure discharges (113-115). 

However, experimental observations at atmospheric pressure 

are not readily obtained because the metastable level life

times are much shorter due to collisional deactivation. It 

should be noted that Hey's calculations are for homogeneous 

nonhydrogenic plasmas and hence, may not apply to plasmas 

used for spectrochemical purposes which generally possess 

relatively large spatial gradients in temperature and analyte 

number densities. 
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The rig differences may alternately be interpreted to 

indicate the presence of significant electric and/or magnetic 

fields induced in the plasma region by the load coll that are 

not accounted for by particle field considerations in the 

Stark broadening theory. An approximate calculation of Stark 

splitting of the line in a static electric field (96,116, 

117) reveals that ~20,000 volts/cm would account for the 

increased broadening. Magnetic fields of ^10,000 gauss would 

be required to produce splitting equivalent to that produced 

by the particle field (96). Calculations for typical atmo

spheric pressure argon induction discharges assumed to be in 

LTE (6,118) indicate that axial magnetic fields and 

azlmuthal electric fields should be on the order of a few 

hundred gauss and a few hundred volt/cm, respectively. For 

a pure induction discharge In L'T'E the axial electric 

is zero (118). Field strength calculations for nonequllibrium 

plasmas are generally not available because the theory is 

not well understood. Although the nonpartlcle field strengths 

calculated by the models mentioned above are very much smaller 

than necessary to produce significant line splittings, the 

unknown nature of possible nonequllibrium fields precludes a 

definitive interpretation of their effects on line broadening 

in the present context. 

The present Inability to interpret n^ differences in a 

more definitive manner should not detract from the fact that 

the results of this dissertation research correlate very well 
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with empirical observations (lc,103) which indicate low levels 

of interelement effects at low observation heights and 

increased effects higher in the plasma. The surprisingly low 

sensitivity of n^ and temperature distributions at 15 and 

20 mm to the addition of an EXE (see Figures 9 and 11) 

suggests that changes in the total composition of the sample 

should not affect radial excitation temperatures nor degree 

of ionization of analytes in a dominant manner. The signif

icant increase in n^ in the wings of the 25 mm profile when 

Na is added as an EIE suggests that Ionization suppression 

may play a role if a significant fraction of the analyte 

diffuses into these regions. Indeed, some evidence of this 

type of diffusion is provided by the Ca I 422.7 nm line 

profile data reported by Larson et (103)> which showed a 

peculiar uii-axls "Irorûp" when Na v;aD added to the plasma for 

an observation height of 20 mm. These results provide 

additional evidence that careful consideration of the region 

sampled by the viewing field of the spectrometer is an 

important factor when plasma performance is analyzed (10). 

This is especially true when the enlarged acceptance cone of 

the wide aperture optical systems commonly employed for the 

analytical applications of these plasmas samples a signifi

cant portion of the off-axis regions. 
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CHAPTER VI: SUGGESTIONS FOR FUTURE WORK 

Although this Investigation has aided In the under

standing of several important aspects of analyte excitation 

in ICP's employed for spectrochemlcal analysis, a number of 

avenues of research remain open. 

Certainly, the validity of the LTE assumption for 

different ICP operating conditions should be ascertained 

because the absolute interpretations of the results of many 

diagnostic methods (e.£., excitation temperature and Saha n^ 

measurements) are critically dependent upon LTE conditions 

prevailing in the plasma. The role of support gas and sample 

metastable levels should be elucidated because this may 

provide useful information about analyte excitation mechanisms 

and may help resolve the LTE question. 

Studies concerning the effects on lateral intensity 

profiles and, subsequently Abel inversion calculations from 

asymmetries in the plasma torch, in the induced magnetic and 

electric fields, and in the gas flow patterns should be 

pursued. Improvements in the Abel inversion procedure should 

help to avert some of the problems encountered when toroidal 

lateral intensity distributions are inverted. 

Investigations on the applications of other diagnostic 

techniques such as laser techniques (119-121) and interfero-

metrlc (122,123) methods should be initiated because these 

techniques could provide powerful alternative approaches for 
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probing spatial particle density and temperature distri

butions In the plasma. The work proceeding In this laboratory 

on coupling a mass analyzer to an ICP (124) may also provide 

a valuable diagnostic tool. 

Work on the spectroscopic probing of the spatially 

resolved radial excitation temperatures and n^ distributions 

experienced by analytes should continue because even though 

the results of these studies may lack absolute interpretation 

from lack of LTE in the plasma, valuable information will 

still be obtained on relative excitation trends (e.g_., 

increased interelement effects may be partially or completely 

explained by a drastic change in the n^ distribution at 

1.3 &/min aerosol carrier gas flow when an EIE is added to 

the plasma). Studies of the effects on excitation tempera

ture and n distributions when ultrasonic nebullzatlon of the 

sample solution is employed, with and without desolvation, 

may provide some Insight into the reasons why better than 

order of magnitude improvements in ICP detection limits have 

been noted when this method was compared to pneumatic 

nebulization (lc,125). 

Near the end of this dissertation research, work was 

begun on adaptation of a modular computer-controlled plasma 

facility (126) to perform automated lateral Intensity 

profiling experiments. Progress in this area and suggestions 

for further modifications were summarized in several recent 
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research reports (127). An assembly language program to 

perform these experiments was written for the DEC PDF 8/e 

minicomputer on this system (127). This program was designed 

for the existing facilities but may easily be modified as the 

equipment is updated. The work on this system should be 

continued to facilitate profiling experiments by the efficient 

utilization of the minicomputer capability for on-line control 

of these experiments. 
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APPENDIX A: 

ABEL INVERSION AND TEMPERATURE PROGRAM 

The Abel inversion and radial temperature calculations 

were performed in a single FORTRAN IV computer program. A 

complete listing of the source statements of the most recent 

version of this program Is included as C337TEM2. [A Cal-Comp 

Digital Incremental Plotter could be (optionally) employed 

off-line to plot the radial intensity and temperature data 

obtained from this program.] In conjunction with the 

plotting subroutines (RADPL, TEMP, and SLOPET) in this 

program, two ISU library programs, GRAPH and GRAPHS, were 

utilized. These routines were part of the SIMPLOTTER (128) 

library, which was available for graph production. For an 

Installation without SIMPLO.TTER, the RADPL subroutine and 

the CALL RADPL statement In the main program should be 

removed. The CALL GRAPH and CALL GRAPHS statements in sub

routines TEMP and SLOPET should also be removed. In this 

manner the program size will be reduced and the plotting 

capability will be lost. The data card input variable 

requirements are outlined in Table A-1 and these variables 

are defined in the beginning of the program listing. 

An earlier version of this program (C337TEM1) was also 

employed for some Inversions of the lateral relative intensity 

profiles obtained for Pe I lines. This earlier program 

Incorporated a different polynomial fitting method In the Abel 



www.manaraa.com

96 

inversion subroutine (CBABEL) than the one used in the 

C337TEM2 subroutine, DKABEL (see Appendix B). An F-test for 

goodness to fit (8l) was incorporated into the latter program; 

this test sometimes yielded fits of artificially high degree 

to the bell-type Pe I relative intensity data. Subsequently, 

erroneous radial temperature profiles were calculated from the 

resulting intensities, particularly for the observation height 

of 15 mm. These profiles were recognized by: (1) very large 

calculation uncertainties for the radial intensities and 

temperatures obtained (cf.. Equation B36, Appendix B), and 

(2) the peculiar shaped radial intensity and temperature 

profiles that resulted from these inversions especially at 

15 mm. For the latter, unrealistically steep off-axis peaks 

were sometimes obtained in the toroidal temperature profiles 

typical for this observation height. These situations were 

corrected by: (1) employing DKABEL in C337TEM2 but, 

restricting the fits to be a maximum of 2-nd degree, or 

(2) employing CBABEL in C337TEM1, which incorporated fixed 

2-nd degree fits to all profile zones (cf.. Figure B-3, 

Appendix B) but was more restrictive with respect to data 

input. For the latter, the lateral relative Intensity pro

files were required to consist of equally spaced data points 

in multiples of 5n+l where, n>2. It was sometimes difficult 

to obtain lateral relative intensity data that complied with 

these criteria. However, in most cases employing the 
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restricted 2-nd degree (maximum) fits with C337TEM2 remedied 

the problem, precluding the necessity of resorting to the 

C337TEM1 method. 
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Table A-1. Data card requirements for C337TEM2 

Type # Cards Columns Variable 
Name 

Format Remarks 

1 1 1- 5 NSETS 15 Number of profile data sets 

2 1/set 1-6C 
6l -8c 

TITLE 
DLAB 

15A4 
5A4 

Experiment description label 
Plot description label 

3 1/set 1- 5 
6-10 

11-30 

LKODE 
lARTP 

ELNAME 

15 
15 

5A4 

Indicates Fe/Ar or other lines used 
Selects Ar transition probability 
data set 

Name of element other than Fe or Ar 
(punch LKODE = 99j this Is redefined 
to be LKODE = 3 in subroutine 
PNTORG) 

4 1/set 1- 5 
6 - 1 0  

NLZ 
IWT 

15 
15 

Number of lines (4 max) 
End point weighting selection (used 

with subroutine SPLINE) 

5 1/set 1-28 
31-70 

WAVE 
DELA 

4F7 .2 
4F10.0 

Line wavelength array (Angstrom units) 
Transition probability uncertainty 

array 

6 1/set 1- '5 
6-10 
11-15 

2 1 - 2 5  
26-30 
3 1 - 3 5  
36-40 
41-45 
46-50 

L1 
L2 
L3 

L5 
NL 
NH 
KPLOTl 
KPL0T2 
KPL0T3 

15 
15 
15 

15 
15 
15 
15 
15 
15 

Intensity plot option switch 
Spline fit option switch 
Two-line temperature calculation 

option (Fe lines only) 
Slope temperature calculation option 
Pointer to starting F-test value 
Pointed to ending F-test value 
Option to plot Fe two-line T's 
Option to plot average Fe two-line T's 
Option to plot slope T's 
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Table A-1. (Continued) 

Type 
# 

# Cards Columns Variable 
Name 

7 1/set 

8a N/set 

8b N/set 

8c N/set 

8d N/set 

9a-l 1/llne 

51-55 
56-6C 
61-65 
66-70 

1- 2 

1-10 
11-20 

1- 5 

6-10 

16-35 
36-45 

46-50 

51-60 

KLINEl 
KLINE2 
KPNEDl 
KPNED2 

N 

RBP(1,1) 
ARI(1,1) 

RBP(1,2) 
ARI(1,2) 

RBP(1,3) 
ARI(1,3) 

RBP(1,4) 
ARI(1,4) 

NPTS 

NSl 

ELEMNT 
ZPNT 

LSHIPT 

XZERO 

Format Remarks 

Option to select Fe two-line T's to plot 15 
15 
15 Option to punch lateral T's on cards 
15 Option to punch radial T's on cards 

12 Number of lateral Intensities (15 max) 

PIO.O Lateral displacement array for line #1 
PIO.O Corresponding lateral Intensity array 

Same as 8a except for line # 2  
Same as 8a except for line # 2  

Same as 8a except for line #3 
Same as 8a except for line #3 

Same as 8a except for line #4 
Same as 8a except for line #4 

15 Number of points for segmented spline 
fit 

15 Defines number of zones for Abel 
Inversion poly fit 

5A4 Element Identifier in subroutine SPLINE 
PIO.O Distance between successive radial in

tensity calculations 
15 Option to zero correct lateral displace

ments 
PIO.O Zero position for lateral displacement 

array (used when LSHIPT = 1 specified) 

VD 
VO 
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Table A-1. (Continued) 

Type # Cards Columns Variable Format Remarks 
# Name 

61-65 NPACTR 15 

66-7C KWT 15 

9a-2 NPTS/ 1-10 XDIST FIO.O 
line 11-20 YINT FIO.O 

21-30 SIGMAY FIO.O 

9b-l 1/line 1- 5 IMA 15 

6 - 1 0  NSl 15 

11-20 XPNT FIO.O 

21-30 XBIG F10.4 

9 b - 2  IMA/ XDIST 
line YINT 

SIGMAY 

Weight factor selection for endpolnts 
of spline fits 

Option to select reading uncertainty 
array for lateral intensities from 
cards 

Smoothed lateral displacement array 
Corresponding lateral intensity array 
Corresponding uncertainty array 

Number of points in lateral intensity 
array 

Defines number of zones for Abel in
version poly fit (same as 9a-l NSl) 

Distance between successive radial in
tensity calculations (same as 9a-l 
ZNPT ) 

Lateral position of profile maximum 

Same as 9a-2 XDIST 
Same as 9a-2 YINT 
Same as 9a-2 SIGMAY 

NOTE: Types 9a-l and 9b-l are mutually exclusive; 9a~l is used only with 
subroutine SPLINE (L2 = 0) and 9b-l only with subroutine XYCALC 
(L2 = 1) 
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Table A-1. (Continued) 

Type # Cards 
# 

Columns Variable 
Name 

Format Remarks 

10a 1/set 1-40 GA 4F10.0 OPTIONAL: gqA^p array for Ar I lines 

listed in comment card 
section, used when LKODE = 
2 and lARTP > 6 

lOb-1 1/set 1-40 EQ 4P10.0 OPTIONAL; Excitation energy of ELNAME 
lines employed, used when 
LKODE = 3 

lOb-2 1/set 1-40 GA 4F10.0 OPTIONAL; g A array for ELNAME qp 
lines, used when LKODE = 3 
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c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  

********** C337TEM2 *<:I|T**** *** 
*** DEFINITION OF IMPORTANT VARIABLES AND INDEXES USED *** 

TITLE = DESCRIPTION OF EXPERIMENT 
DLAB = MONITORED REGION OF EMISSION 

*+ CONTROL SWITCHES ** 

SOURCE (FOR PLOT ID) 

F -

LI =0. NO LATERAL OR RADIAL INTENSITY PLOTS 
LI =1. SUPERIMPOSED PLOTS OF LATERAL AND RADIAL INTENSITY 
L2=0» MEASURED INTENSITY FIT BY SEGMENTED SPLINE AND ZERO 

CORRECTED IF NECESSARY (LSHIFT=1) 
=1.SPLINE F I T  N O T  NECESSARY; SMOOTHED LATERAL PROFILE 

(ZERO CORRECTED) SUPPLIED AND SUBROUTINE XYCALC 
USED 

L3 =0, AVERAGE LINE PAIS TEMPERATURE AND PLOT 
L3 =1. TEMPERATURES OF INDIVIDUAL LINE PAIRS AND PLOT 
L5 =0. TEMPERATURES CALCULATED FROM I(XI & I(R) DATA 
L5 =1, ONLY RADIAL INTENSITIES CALCULATED TEMP BY-PASSE 

TEST FOR 0.5 TO 50O0 PERCENT PROBABILITY OF EXCEEDING THE 
F-VALUE; 
MAX NH=7 

NL DEFINES 
MIN NL=1 

THE LOWER LIMIT, NH DEFINES UPPER LIMIT 

1 
2 
3 
4 
5 
6 
7 
8 
9 
1 0  
1 1 
1 2 
13 
14 
15 
16 
1 7 
1 8 
19 
20 
21 
2 2  
23 
24 
25 

c  PERCENT NL ALLOWED NH VALUES 26 
c  0=5 1 U•2»3»4.5»6»7 27 
c  1 «0 2 # 3 # 4* 5.Ô.7 28 
c  2.5 3 3.4,5.6.7 29 
c  5» 0 4 4.5,6, 7 30 
c  10.0 5 !5. 6, 7 31 
c  25.0 6 <>,7 32 
c  50.0 7 T 33 
c  LKOOE 1 « FE LINES USED 34 
c  LKOOE = 2 , AR LINE:» USED 35 
c  KPLCITl 1 • 2-ILINE T*S NOT PLOTTED 36 
c  KPLCIT2 = 1 , AVE. 2-LINE T«S NOT PLOTTED 37 
c  KPLOT3 =r 1 . SLOPE T NOT PLOTTED 38 
c  KLINE 1 < 2. ALL 2-LINE T« S PLOTTED 39 
c  2. 1ST 2-LINE T NOT PLOTTED 40 
c  3. ISTT. 2ND 2-_INE T'S NOT PLOTTED 41 
c  4, 1ST,.....3R3 2-LINE T'S NOT PLOTTED 42 
c  = 5, 1ST,.. ,4TH " " M M  " 43 
c  6, 1ST... .5TH " " " " 44 
c  7, ALL NOT PLOTTED 45 
c  > 7, ALL NOT PLOTTED 46 
c  KLINE2 = 0. ALL 2-1.1 NE T'S PLOTTED 47 
c  1 . 1ST LP T NOT PLOTTED 48 
c  = 2. 2ND « «« « " 49 
c  3. 3RD " •• " " 50 

o 
rv) 
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C = 4 . 4TH ti «1 
C = 5, 5TH ti «> 
C 6. <STH n 11 
C > 6, ALL 2-Lli 
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  
c  

KPNEOl = 1. 

KPNED2 = 1. 

T•S PLOTTED 
LATERAL SLO^E T'S PUNCHED ON CARDS FOR USE IN 
THE ELECTRON DENSITY PROGRAM (C337EDEN) 
RADIAL !5LOPE T* S PUNCHED ON CARDS FOR USE IN 
THE ELECTRON DENSITY PROGRAM (C337EDEN) 

lARTP = 1. MALONE AND CORCORAN GA VALUES: ARGON LINES 
=2. WUJEC GA 
= 3. ADDOCK /XND PLUMTREE GA 
= 4$ CORLISS AND SHUMAKER GA 
= 5. WENDE GA 
= 6. GERICKE GA 
> 6, READ IN GA DATA CARD AT END OF DATA DECK. 

4F10.0 FORMAT 
ARGON LINES USED: 4251.2,4259.4.4266.3,4272.2 ANGS 

LKOOE=1, IARTP=g. BANFIELO AND HUBER (1973) GA VALUES 
USED FOR FE I LINES 

SPECIES IDENTIFIER AS ELNAME AND READ 
VALUES =OR SLOPE TEMP CALCULATION 
CALCN OPTIONAL, SEE L5 SPECIFICATION) 

LKODE=99, I NPUT 
GA,EQ 
(TEMP 

I N 

** ARRAYS ** 

RBP = EXPERIMENTALLY MEASURED LATERAL DISTANCE ARRAY 
ARI = " " PEAK INTENSITY ARRAY 

CORRESPONDING TO 'RBP' ARRAY 
N = NUMBER OF ELEMENTS IN "RBP* OR 'ARI* ARRAY (NOT MORE 
XD1ST = MEASURED AMD SMOOTHED LATERAL DISTANCE ARRAY. 

ORIGIN ZERC SHIFT CORRECTED WITH RESPECT TO 
EXPT MEASURED R3P ARRAY SO THAT XDIST=0 
CORRESPONDS TO GEOMETRIC CENTER 

YIN7 = CORRESPONDING MEASURED AND SMOOTHED LATERAL INTENS 
SIGMAY=CORRESPONDIrKÎ ARRAY OF SIGMA VALUES FOR VINT 

ARRAY 
RAD = INTERMEDIATE RADIAL INTENSITY ARRAY 
RDI = •• " DISTANCE " CORRESPONDING T 

•RAD' ARRAY 
RADINT = FINAL RADIAL DISTANCE ARRAY CONTAINING ELEMENTS 

CORRESPONDING TO 'RADINT' ARRAY 

•* INDEXES ** 

KT NUMBER OF ELEMENTS IN 'RAD' OR 'ARI' ARRAY 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
6 1  
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81  
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

t—' 
o 
oo 
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c NSETS = NUMBER OF SE: ICS OF PROFILE DATA TO BE PROCESSED, 101 
C INDEX FOR PPJtMARY DO LOOP 102 
C NLZ = NUMBER OF LI NES USED (NOT MORE THAN A) 103 
C LAM =: DATA ARRAY I NOEX FOR PRIMARY DO LOOP 104 
C LZ = SPECTRAL LINE INDEX FOR PRIMARY DO LOOP, 105 
C NOTE: 106 
C LZ = 1, CORRESPONDS TO FE-I- 3815.84 ANGSTROMS 107 

3820.43 " 108 
3624.44 •• 109 
3825.88 " 110 

C THIS LABELLING MUST BE RIGOROUSLY FOLLOWED IN ORDER 111 
C THAT THIS PROGRAM FUNCTION PROPERLY 112 

C LZ = 2 M IL TF •« 
C L Z = 3 TE FT W IF 
C LZ = 4 ## «• «« IT 

C 
C 

C 
c  

C NFACTR=2« " 
C NFACTR=3. " 
C NFACTR=4, " 
C NFACTR=5, " 
C NFACTR=6. 

C 
C 
C 

113 
114 

C ** INPUT CONSTAI NTS AND ARIABLES ** 115 
116 
1 17 

C IMA -- NUMBER OF SMOOTHED DATA POINTS IN ARRAY «XDIST* OR 118 
C (NOT MORE THAN 51) 119 
C NS1=3. 3 ZONE POLY FIT 120 
C NS1 = <>, 4 ZONE POLY FIT 121 
C NS1=5, 5 ZONE POLY FIT 122 
C IBT=0, NO WEIGHTING ON POLY FIT 123 
C =11. YINT VALUES '»(EIGHTED WITH SIGMA Y ARRAY 124 
C XPNT = RADIAL DKSTANCE (MM) BETWEEN TWO SUCCESSIVELY CALC 125 
C RADIAL INTENSITIES = R(N+l)-RtNl» 126 
C WAVE = WAVELENGTHS IDF SPECTRAL LINES (ANGSTROMS) 127 
C XBIG^POSITION OF I N T  MAX IN LATERAL DIST ARRAY (SUPPLIED 128 
C AS INPUT WHEN SPLINE NOT USED IE. XVCALC USED) 129 
C FOLLOWING INPUT CODES NECESSARY ONLY WHEN SUBROUTINE SPLINE US 130 
C KWT=;i . INPUT ARRAY OF IMTEN SIGMAS FOR POLY FIT 131 
C 0, SIGMAS SET =3 S3 THAT WEIGHT=1.0 IN POLY FIT 132 
C NFACTR=1, SPLINE FIT EN3POINTS X 0.825 133 

X 0.850 134 
X 0.875 135 
X 0.900 136 
X 0.925 137 
X 0.950 138 

C LSHIFT=1. LATERAL INTENSITIES ZERO CORRECTED BY XZERO 139 
C XZERO=POSITION OF GEOMETRIC CENTER ON ORIGINAL LATERAL 140 
C DISPLACEMENT SCALE 141 
C NPTS-NUMSER OF POINTS FOR SEGMENTED SPLINE FIT 142 
C *****NPTS MUST BE CREATOR THAN OR EQUAL TO 10 143 

144 
145 
146 

DI MENS ION OLAB<5),TITLE! 15), fc/AVEI 4),XDTR(51),RBP(15,4),ARI(15,4), 147 
ISIGMAY(Sl) ,XDIST( 51 ) ,YINT(51) .RAD( 51).RDI ( 5l),RADINT( 51.4,7 148 
2).RAO I ST ( 51.4,7),ILZ(4«7),XBIG(4) ,0ELA(4 ) ,DEHR( 5 1) .DELINT(51 .4,7 149 
3),FNUM(7),ELNAME(5) 150 
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DATA FNUM/O.5,1 «O»2.5«So0«10.0 » 25,0»50.0/ 151 
READ (5.1003} NSETS 152 

1003 FORMAT (15) 153 
DO 10 NUM=1,NSETS 154 
READ (5.100) TITLE,DLAB 155 

100 FORMAT (1SA4,SA4) 156 
WRITE (6,101) TITLE.DLA8 157 

101 FORMAT (1H1,10X,15A4,SA4«///') 158 
READ( 5.1001) LKODE.IARTPoELNAME 159 
READ(5.1000) NLZ.IWT 160 

iOOO FORMAT(2IS) 161 
nOOl FORMAT(2I5.SAA) 162 

READ (5.102) ( KAVE( I ) , 1 = 1  .NL.Î ) . (OELA< J) . J=1 ,NLZ ) 163 
102 FORMAT (4F7.2„2X.4F1O .O) 164 

CALL L INDEX ( I. 1 ,L2 ,L3 . L4 » L5 . HL , NH . KPLOT1 . KPLaT2 .KPLOT3 . KLI NEl , 165 
1KLSNE2.KPNED1 .,KPNE02I 166 
READ (5.106) N 167 

106 FORMAT (12) 168 
DO 1 J=1,NLZ 169 
DO 1 1=1.N 170 

i 07 FORMAT (2F10.0) 171 
1  READ (5.107) Rap( I , J ) .ARII ( I , J } 172 

DO 8 LZ=1.NLZ 173 
LAM=1 174 
CALL PNTORG(LZ,KM.WAVE.RBP.ARI,N.LKODE.ELNAME) 175 
GO TO (2,3),L ;2  176 

2 CALL SPLINE ( I MA.NS1 .XDIV,XDI ST.Y I NT.LAM.XPNT.LZ.XDTR,XD.XBIG.SIGM 177 
IAY.WAVEoIWT) 178 
GO TO 4 179 

3 CALL XVCALC ( IMA«NS1 •XDIV.XDIST•Y I NT»LAM,XPNT.LZ»XDTR,XD.XBIG.SIGM 180 
1 AY) 181 

4 DO 8 NZ=NL.NH 182 
CALL DKA8EL (XDTR»Y INT•IMA.NS1•NZ.XPNT.RAD.RDI,KT»XD.XBIG.LZ.DEL IR 183 
l.SIGMAY.Ll.IWT) 184 
IF(KPNED2.NE.1) GO TO 5 185 
DO 199 IPUNCH=1.KT 186 

2001 FORMAT(3F10.4.2X,'LINE".I3.2X,"FTEST PROB••F5.2.I X,5A4) 187 
199 WRITE(7.2001) RAD( IPUNCH).RD1 (IPUNCH).DELIR(I PUNCH),LZ.FNUM<NZ).DL 188 

lAB 189 
5 GO TO (7,6) .LI 190 
6 CALL RADPL (I MA.XDIST.Y I NT.N„RBP«ARI, LZ.RAD.ROI.LAM. DLA 191 
18,KT.NZ) 192 

7 CALL PNTMAP (L2.KT•RAD.RDI.KM.ILZ.RADINT.RADIST.DELIR.DELE NT) 193 
8 CONTINUE 194 

11 GO TO (9.10)«LS 195 
9 CALL TEMP (N.KT.RBP.ARI.RACIST.3ADINT.NLZ.DLAB.L3,KM,NL.NH.LKODE. 196 
IKPLOT1.KPLOT2,KLINEl.KLINE2.DELA.DELINT,IARTP) 197 

13 CALL SLOPET CN,KT,RBP,ARI,RAD I ST,RAO INT.NLZ.DLAB.WAVE,KM.NL.NH.LKO 198 
1DE.KPL0T3.KPNE01 «KPNED2»DELA„DELI NT.lARTP) 199 

10 CONTINUE 200 
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STOP 20 1 
END 202 
SUBROUTINE UINDEX d I_ 1 ,L2 , L3 . . L5 . NL . N H » l<Pi_OTl , KPL QT2 , KPLOT 3, 203 

IKLINEl ,KLINE2,.KPNED1 ,KPNE02) 204 
READ (5*101 ) Î..1 ,L29L3.,L4»L5,fJL,NH, KPLOTl ,KPLOT2,KPLOT3.KLINE1 , 205 
1KLINE2,KPNED11KPNED2 206 

101 FORMATdAIS) 207 
La=l 208 
IF (NL) 4,3,1 209 

1 IF (NH-NL) 4«;>.2 210 
3 Z F (NH» 4,5,4 211 
5 NL=1 212 

NH=1 213 
2 IF (L4) 6,6,7 214 
T IF (LI > 8, 10, !L0 215 
10 IF (L3 ) 8,11,111 216 
11 i_a=Lii + i 217 

L2=L2+1 218 
L3=U3+l 219 
L5=L5+1 220 
RETURN 221 

4 WRITE (6,102) 222 
GO TO 12 223 

6 WRITE (6,103) 224 
GO TO 12 225 

8 WRITE (6,104) 226 
12 STOP 227 

102 FORMAT (//I OX'INPUT ERROR IN SWITCH NL OR NH« ) 228 
103 FORMAT (//lOX'INPUT ERROR IN SWITCH L4•) 229 
104 FORMAT (//10X«INPUT ERROR IN SWITCH LI OR L3») 230 

END 231 
SUBROUTINE PNTORG{LZ,KM,WAVE,RBP,ARI,N,LKODE,ELNAME) 232 
DIMENSION ELNAMECSl 233 
DIMENSION W A V I E (  I ) »RBP< 15»4) , ARI ( 1 S,4i 234 
KM=0 235 
IF(LK0OE.E0.99) LKODE=3 236 
GO TO (2,1*1.1)«LZ 237 

1 WRITE (6,100) 238 
2 GO TO (4,5,7).LKODE 239 
4 WRITE (6.101) LZ»WAVE(LZ) 240 

GO TO 6 241 
5 WRITE (6,103) LZ.WAVE(LZ) 242 

GO TO 6 243 
7 WRITE(6.104) LZ.ELNAME,WAVE(LZ) 244 

104 FORMAT(5X,«LINE»•I3,5X.5A4,Fr.2//•14X.•EXPERIMENTALLY MEASURED LAT 245 
lERAL INTENSITY DAT A • / 2 1 X , • CORRECT ED FOR SPECTRAL RESPONSE" •/'26 X ,« X 246 
2".11X,'I(X3'//) 247 

100 FORMAT (IHÏ) 248 
101 FORMAT C5Xo«LINE*,I3.5X,FE I - F7.2,//14X,'EXPERIMENTALLY 249 

IMEASURED LATERAL INTENSITY DATA'/21X.'CORRECTED FOR SPECTRAL RESPO 250 



www.manaraa.com

2NSE'//26X,'X'.llX.'IfX)'//) 251 
103 FORMAT (5X,'LINE',13,SX,'- AR I - ',F7.2.//14X,"EXPERIMENTALLY 252 

IMEASUREO LATERAL INTENSITY DATA'/21X,'CORRECTED FOR SPECTRAL RESPO 253 
2NSE*//26X.'X'.11X.*I(X)*//) 254 
6 DO 3 1=1,N 255 
3 WRITE (6,102) iRBP( I , L 2 ) , AR I ( I , L Z) 256 

102 FORMAT (22X«F8.4.6X,F8.4) 257 
RETURN 258 
END 259 
SUBROUTINE XVCALC (IMA,NS1, XDI V,XDI ST,Y INT,LAM,XPNT,LZ, 260 

1XDTR,XD,XBIG»SIGMAY) 261 
DIMENSION SlIGMAYd) 262 
DIMENSION XDI STt 1) ,YINT( 1 ) , XB I:G<4 I , XOTR( 1 J 263 
READ (5,100) IMA,NS1,XPNT,XBIO(LZ) 264 

100 FORMAT <2I5«2(F10,4)} 265 
IF(XBIG(LZ)«LT.O.0 J GO TO 8 266 
IF (LAM-1) 2,2,1 267 

1 WRITE (6,101) 268 
LOI FORMAT ClHl) 269 
2 WRITE (6,102) IMA 270 

102 FORMAT(//IftX,"LATERAL INTENSITY DISTRIBUTION HAS BEEN EXPERIMENTAL 271 
ILY MEASURED WITHOUT SPLINE IMTERPOLATI ON'/14X,' INPUT LATERAL DATA 272 
2HAS BEEN ZERO CORRECTED FOR• . r3,2X,•POI NTS' ,//T25,'X• •T38, 'U(X)' ,T 273 
360,'SIGMA*U(X))',//) 274 ^ 
DO 3 1=1,IMA 275 ^ 

103 FORMAT (3F10.C) 276 
104 FORMAT (T20,F1O.4,T33«F10.4,160,EI 1.4) 277 

READ (5,103) XDIST{I)flYINT(11,SIGMAY(I) 278 
3 WRITE(6,104) XD1ST( I)«YÎNT(I ! ,SIGMAY(I) 279 

XD=ABS(XOIST( 1 MA)) 280 
DO 7 1=1,IMA 281 

7 XOTR<I)=XDIST(I)/XD 282 
XDIV=ABS(KDTRC2)-XDTRC1)) 283 
XPNT=XPNT/XD 284 
RETURN 285 

8 WRITE (6,105) 286 
105 FORMAT (lOX'ERROR IN XB1G INPUT') 287 

STOP 288 
END 289 
SUBROUTINE PNTMAP (LZ,KT« RAD,RDI,<M,IL2,RAO INT,RADIST•DELIR,DELI NT 290 

1 ) 291 
DIMENSION RAD ([ I ) ,ROI ( 1 ) , RAO INT ( 51 .4.7) , RAD I ST (51,4,7),ILZ(4,7) 292 

l,XHOLD(51 ) , YHOLO(51 ) • OELlIR( 5 1 » ,KLINT(S1 ,4,7) 293 
KTrHOLD=KT 294 
KM=KM+1 295 
WRITE (6.100) LZ,KT 296 
DO 4 1=1,5 297 
IF (KT - 30*1) 1,1,4 298 

1 J=KT/I 299 
IF (KT - I * J )  3,3,2 300 
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2 J = J-H 301 
3 GO TO (5,6*7,8,9), I 30 2 
4 CONTINUE 303 

WR ETE (6.101) 304 
STOP 305 

5 WRITE (6.102) 306 
GO TO 10 307 

6 WRITE (6,103) 308 
GO TO 10 309 

7 WRITE (6.104) 310 
GO TO 10 311 

8 WRITE (6,105) 312 
GO TO 10 313 

9 WRITE (6,106) 314 
10 DO 16 L=1.J 315 

I_ 1 ~L+ J 316 
L2=L+2*J 317 
L3=i_ + 3*J 318 
L4=L+4*J 319 
GO TO (11,12.13,14,15),I 320 

11 WRITE (6,107) RDKL ) . RAD(L) 321 
GO TO 16 322 

12 WRETE (6.108) SO I(L),RAD(L) ,RC I (L1 ) ,RAD(LI ) 323 
GO TO 16 324 

13 WRITE (6,109) RDI(L),RAD(L),RDI(L1>,RAD(H),R3I(L2),RAD(U2) 325 
GO TO 16 326 

14 WRITE (6,110) RDI ( L ) , RAD<IL) ,RDI(L I ) .RAD(L 1 ) , RD I (L2 ) ,RAO( U2 Î , 327 
1RDI(L3),RAD(L3) 328 
GO TO 16 329 

15 WRITE (6,112) RDKL),RAD(L),RDI(LI),RAD(L1).RDI(L2).RAD(L2), 330 
1RDI(L3),RAD€L3)»RDI(L4),RAD(L4) 331 

16 CONTINUE 332 
WRITE (6,1000) 333 

1000 FORMAT (IHl) 334 
WRITE (6.1001 J 335 

1001 FORMAT (20X,•J»,8X,•LZ*,8X,•KM»,8X.•RADIST(J.LZ.KM)•,6X,•RADINT(J. 336 
1LZ.KM)=,6X««DELINT(J,LZ,KM)•) 337 
IF (RDK 1) oGEoO. ) GO TO 22 338 
INZERO=0 339 
DO 20 IN=1« KT 340 
IF (RDI(IN).LT.O.) GO TO 20 341 
INZERO=INZERO*l 34 2 
XHOUD(INZERO)=RDI(IN) 343 
YH(M_0( INZERO) =RAD( IN) 344 

20 CONTINUE 345 
DO 21 IOUT=l.INZERO 346 
RAC ( lOUT )=YHOL.D( lOUT ) 347 

21 RDI ( IOUT»=XH0L,0( lOUT) 348 
KT-INZERO 349 

22 IL2(LZ,KM1) = KT 350 
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DO 17 1=1,KT 351 
J=KT-I+1 352 
RAOrsriJ,L2,KM)=RDI(1) 353 
RAOINTt J •«_2»KM)=RAD( I ) 354 
DELINT(J«UZ.KM)=OELIR<I> 355 
WRITE (6$1002) J.LZ.KM,RADISTIJ.LZ.KM).RADINTCJ.LZ.KM).DELINT{J,U2 356 

l.KM) 357 
1002 FORMAT (20X,3( I 3 • 8X1 ,3(E1 I.4.10X) ) 358 

RAD< I )=0.0 359 
17 RDI(K)=0.0 360 

KT=KTHOLO 361 
RETURN 362 

lOO FORMAT (//19X.'LINE *,I1.* - RADIAL INTENSITIES FOR '.13, 363 
1* RADIAL POSITIONS £N SOURCE'//) 364 

1101 FORMAT (19X.'PRINT ERROR»» 365 
102 FORMAT <A2X,•P•,Î2X,•ICR)•//) 366 
1103 FORMAT < 31 X .• R • ,8Xi. • I ( R ) • ,20> . «R* .8X. • I (R > •//) 367 
1104 FORMAT < 31 X . • R: • • 8X . • I( R Î « . 10>; , • R* . 8X , • I C R ) • , 1 0 X , » R • , 8X . • I ( R ) •//) 368 
1105 FORMAT < 31 X . • R • . 8X e • I €R J • . 3 < I (JX »• R • , 8X , • 1 ( R) • )//) 369 
106 FORMAT ( 8X.•R',8X« • 1CRÎ • ,4«10X.•R' ,8X. 'I<R)')//) 370 
107 FORMAT (39X.F7.4.6X.F9.5) 371 
108 FORMAT ( 28X.F7 . 4 .2 X, F9, 5 , 15 X i f-7. 4 , 2X ,F9. 5 ) 372 
109 FORMAT (28X.F7.4.2X.F9.5.2(5X,F7.4,2X.F9«5)) 373 
110 FORMAT (28X*FT.4.2X.F9.S,3(5X.F7.4,2X.F9.5)) 374 
111 FORMAT (SX«FT.4.2X.F9.5,4(5X,F7.4.2X.F9.5)) 375 

END 376 
SUBROUTINE SPLINE d I MA . NSl , Zt) IV , Z DI ST , Z INT , LAM , ZPNT , L2 , ZDTR . ZD , Z0 I 377 

IG.ZSIG.ZWAVE.IWT) 378 
EMPLICIT REAL*8(B-H.O-Y) 379 
DEMENS ION ZDI £.T < 1 ) . ZI t«»T C 1 ) , El.EMNT (5).ZSIGC1). ZWAVE( 1 ) .FACTORt 6) , YO 380 

lUTt10 1,3)»YINT(51).XDIST(51 )< S IG«AY(51 » ,YMID(50,3),SIGMASK SO) .ZDTR 381 
2 ( 2*,WAVE(4).ZOIG(4) 382 
DATA FACTOR/0 82 SO0. O .. 85D0. O.. B75D 0 » 0. 90D0 . 0 • 925D0 , 0 •95D0/ 383 

C 384 
C EXECUTE SPLINE: FIT AND VARIANCE ESTIMATE FO MIDPTS FOR EACH LINE : 385 
C TOT SIGMA = SORTIFIT SIGMA**2+DATA SIGMA**2) DATA SIGMA IS TAKEN 386 
C AS AVERAGE OF SIGMA OF FOUR IvIE IGH BORING INPUT DATA POINTS EXCEPT 387 
C FOR THE ENOPOItNTS WHERE ET I S TAKEN AS THE AVERAGE OF THE ENDPOINT 388 
C SJIGMA AND THE TWO ADJACENT INTERIOR POINT SIGMA VALUES 389 
C 390 

WAVECLZ)=ZWAVE<LZ) 391 
I=LZ 392 
CALL READS<NPTS.YINT.XDIST.ELEMNT,WAVE.XZERO.I.SIGMAY.LSHlFT.SCHK. 393 
INFACTR,NSl.ZPNT.KWT) 394 
IWT=KWT 395 
CALL INTERP (NPTS.YI NT,XDI ST,I,SCHK,YMID,NFACTR,FACTOR) 396 
SIGMAStI)=YMID(1,3) 397 
SIG=C SIGMAYd )+SIGNAY(2)*SIGMAY(3) >/3.D0 39 8 
YMIDd1.3)=DSQWT(SIG**2+SIGMAS(1)»*2) 399 
NPTSS=NPTS-1 400 
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10 

c  
c  
c  

24 

25 

30 

40 
41 

45 

C 
C 
c 

DO 10 N=3.NPTSS 
J =N — 1 
JJ=N-2 
NN=N+1 
S I GMA se J > = YMI D( J ,3) 
SIG=C S ÏÏGMAY C JJ)+SIGMAY{J)+SIGMAYC N > + SIGMAY(NN) )/4.00 
YMIO( J o3 )=DSQRT{ SIGMASi J ) *•2+£i I G* »2 ) 
N=NPTSS-l 
SIGMAS<NPTSS)=YMID(NPTSS,3) 
SIG=(SÏGMAYdND+SIGMAYCNPTSS)•SIGMAY(NPTS))/3.D0 
YMIDCNPTSS.3)=OSQRT< S 1G**2 + S1GMAS< NPTSS)**2) 
NUP=NPTS+NPTS-1 
DO 30 N=ltNUP 
NN=(N/2)*2 
IF<NN.NE.N) GO TO 25 
LL=N/2 
DO 24 L=1.3 
YOUT«N.L)=YMI D(a_U,L) 
GO TO 30 
LLL={N+1)/2 
YOUTH N. 1 ) = XDI£iT(U_LI 
YOUTt N.2)=YINT< LUUÎ 
YOUT(N,3)=SIGMAY(LLL) 
CONTINUE 

CORRECT YOUT FOR ZERO SHIFT 

) GO TO 4 1 
ÏTAG=0 
IF{LSHIFToNE.1 
JSTART=1 
DO 40 J=1,NUP 
YOUT(J,1)=YOUT(J,1)-XZERC 
IF(YOUT(Jo1I.GE«0«0) GO TO 
JSTART=J+1 
CONTINUE 
IFCLSHIFT .NE. Il J JSTART=1 
DO 45 J= JSTARir, NUP 
ITAG=ITAG+1 
ZOIST( ITAG)=YOUTC J. 1 
ZÏÏNTtITAG)=YOUT<J.2) 
ZSIG( ITAG)=YOUT< J»3» 
IMA=1IT AG 

40 

) 

DETERMINE POSITION OF MAX IN LATERAL INTENSITY ARRAY 

60 

ZBIG€ LZ)=ZOISTC3) 
DO 60 J=4,IMA 
JJJ=J-1 
IF< ZINT(J).GE.ZINT(JJJ) ) 
CONTINUE 

2BÏÏ G ÎLZ)=ZDIST{J) 

401 
402 
403 
404 
405 
4C6 
40 7 
408 
409 
410 
411 
412 
413 
414 
41 5 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
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IF(UAM-1> 65,65.64 451 
64 WRITE(6,1000) 452 

1000 FORMAT(1 HI ) 453 
65 WRITE(6,ICOl) IMA 4S4 

1001 FORMAT(///14X,'LATERAL INTENSITY DISTRN HAS BEEN FIT BY SEGMENTED 455 
iSPLINE, MIDPOINTS I NT ER POL AT fîO . AND SIGMA S DETERMINED",/.14X.*RESU 456 
2LTING LATERAL DATA HAS BEEN JIERO CORRECTED FOR'.13.2X.'POINTS',//T 457 
325,'X'.T38,"U(X)'.T60»•SIGMA( J(X))',//) 458 
DO 66 J=1bIMA 459 

10 02 FORMAT <T20.F10«4,T33 .F10.4, rôO.ElI.4) 460 
66 WRITE (6, 1002) ZD I ST ( J J . Z I NT ( .J ) , 2S I G < J ) 46 1 

ZO=ABS( ZDÎST( 1;MA) ) 462 
DO 67 J= 1 , I MA 463 

6T ZOTR( J ï = ZOIST <: J »/ZD 464 
ZOIV=A3S(ZDTR<2)-ZDTRtI)J 465 
ZPNT=ZPNT/ZD 466 
RETURN 467 
END 468 
SUBROUTINE READS (NPTS.YENT.XDIST,ELEMNT,WAVE.XZERO.I.SIGMAY.LSHIF 469 

IToSCHK.NFACTR„NS1,2PNT,KWT) 470 
IMPLICIT REAL08<A-H,0-Y) 471 
DIMENSION VINTJ1).XDISTt1),ELEMNT(5).WAVEt1),SIGMAY<1) 472 

C 473 
C READ INPUT X, Y PAIRS FOR LINE I 474 
C 475 

READC5,100) NPTS,NSl,ELEMNT.^PNT.LSHIFT,XZERO,NFACTR,KWT 476 
100 FORMAT{2I5.5X ,5A4,F10 .0 , I5.FI 0.0,215) 477 

DO 10 J=1,NPTS 478 
101 FORMAT (3F10.0) 479 
10 READ (5.101) KDISTtJ).YINTfJ),SIGMAY(J) 480 

SCHK=XOISTCNPTS) 481 
RETURN 482 
END 483 
SUBROUTINE INTERP <NPTS.Y INT.XDIST, I,SCHK,YMID,NFACTR.FACTOR) 484 
IMPLICIT REAL*8(A-H,0-Z) 485 
DIMENS ION Y HOLD (SO. 5) • XNORM{ 5 Î . VNORM(6]i , XMI D{ 5 ) . YSTOR { 50 . 5 ) .Y A VE ( 5 486 

10). COEFC 6 .4 ) ,FACTOR( 1 ) , YINT ( ll.X[>IST(l]i^YMID(50,3). SIGMA( 50 ) 4 87 
488 

C CALCULATE SPLINE FIT FOR 6 PT INTERVALS BEGINNING AT XDIST(l) AND 489 
C CONTINUE TO STOP: TABULATE MIDPOINT D:ST, AVE VALUE,AND SIGMA 490 
C 491 

DO 5 J=l,35 492 
Y AVEd J ) = 0 .DO 493 

5 SIGMA(J)=O.DO 494 
KOUNT=0 495 
DO 999 J=1.NPTS 496 
JJ=J+5 4 97 
IF(JJ.GT.NPTS) GO TO 9999 498 
IF(XOIST(JJ).LE.SCHK) GO TO 6 499 
WRITE (6,888) 500 
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IN XDIST(NPTS) TO INTERP 

C 
c  
c  
c  
c  
c  

c  
c  
c  

888 FORMAT (//.T25,*********** TRANS=ER ERROR 
1. END RUN ***X'****** ) 
STOP 

6 KOUNT=KOUNT+l 
HSIZE=1,D0/3«D0 
K=J+1 
YMIDC KOUNT , I ) == ( XOI ST { J ) +XD I ST ( K > ) / 2 . DO 
XNORM(1)=-HSIZE 
DO 10 L=2,6 
XL=L-2 

10 XNORM < U> = XL*H SI ZE 
YNORMtI)=FACTQR(NFACTR)*YINTlKOUMT) 

11 L=KOUNT 
DO 20 LL=2.6 
L=L + 1 

20 YNORM(LLl=YINTCL) 
YNORM{6)=FACTOR(NFACT R > *YNOR M{6 i 

CALL MATRIX INVERSION ROUTINE TO SOLVE FOR SPLINE COEFFICIENTS AND 
CALCULATE MIDPOINT X VALUES AND SPLINE FIT INTENSITY VALUES 

29 CALL XMATRX(6.YNORM,COEF,I,HSIZE,KOUNT) 
DO 30 LL=2,6 
L=LL-1 

30 XMIDCL >=( XNORM(LL)+XNORMCL) ) / 2 . DO 
CALL CALCY (I,6.COEF,XMID»HS IZE,Y HOLD,KOUNT) 
XINC=XDISTC2)-XDISTf1) 
DO 40 JJ=1»4 
JJJ=KOUNT+J J 
XJJ=JJ 

40 YMID(JJJ.1J=YMID(KOUNT,1)+(XJJ*XINC > 
DO SO L=1,S 
LL=K0UNT+L-1 
YAVE(LL) = YAVE(LLJ+YHOLD(KOUNT «L) 50 

DEFINE STORAGE ARRAY 'YSTOR* FOR SIGMA CALCULATION 

85 IF(KOUNT•LT-5) GO TO 100 
DO 90 Nl=l»5 
N2=N1-1 
N3=KOUNT-N2 
YSTOR(KOUNT.Nl)=YHOLD(N3,Nl) 

90 CONTINUE 
KN=NPTS-5 
IF( KOUNT .LT .KNI GO TO 999 
DO 91 Nl=lo4 
N2=KOUNT+Nl 
NN=N1+1 

50 1 
502 
503 
504 
50 5 
506 
507 
508 
509 
510 
51 1 
512 
513 
514 
515 
516 
51 7 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 
548 
549 
550 

rv) 
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91 

100 

ICI 

102 
999 

999 

56 

57 

58 
59 

e s  

66 

67 

551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 
575 
576 
577 
578 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 

DO 91 NNN=NN,5 
N3=NNN-N1 
N<V=KOUNT+ 1 -N3 
YSTOR<N2»N3)=YHOLD« N4.NNN) 
GO TO 999 
IF(KOUNT.GT»!) GO TO 101 
YSTOR(1,1)=YHOLD( 1.1) 
GO TO 999 
DO 102 Nl=l.KQUNT 
N2=N1-1 
N3=KOUNT-N2 
YSTOR(KOUNT,Nl)=YHOLD(N3«Nl) 
CONTINUE 

CALCULATE SIGMA AND STORE «YAVE* AND «SIGMA* IN «YMID» AS 
YMIDtJ«2> AND VMIO(J,3». RESPECTIVELY 

J=NPTS-1 
DO 70 JJ=1,J 
IF(JJ «LT.5 3 GO TO 57 
KK=NPTS-5 
ïF(JJoGT.KK) GO TO 65 
YMIO(JJ.2I=YAVE(JJJ/S.DO 
DO 56 11=1»5 
SIGMA(JJ)=C YSTOR*JJ.II)-YMIDIJJ.2i >**2 
SIGMA( JJ )=OSORTCSIGMA< J J)y'4.D0) 
YHIDfJJ,3)=SIGMA(JJ) 
GO TO 70 
XJJ=JJ 
YMIDIJJ.2)=YAVE(JJ)/XJJ 
IF(JJ.GT.l) GO TO 58 
YMID(JJ.3Î=0«00 
GO TO 70 
DO 59 11=1,JJ 
SIGMAfi JJ) = C YSTOR< JJ.I I)-YMIC C JJ,2) )**2 
XII=XJJ-1oDO 
SIGMAt JJ)=OSORTtSIGMA (JJ)/X1 1[ ) 
YMID(JJ.3I = S1[ GMA< JJ) 
GO TO 70 
XKK=NPTS-JJ 
YMID(JJ,2)=YAVE(JJ)/XKK 
IFCJJ.LToJ) GO TO 66 
YMIO( J J. 3) = 0.00 
GO TO 70 
£ II=NPTS-JJ 
DO 67 I1=1,HI 
S IGMAC JJ) = ( YSTOR ( JJ . ïï I ) -Y MI t) ( J J . 2 ) ) **2 
XI1=1II-E 
SIGMA* JJ )=DSCIRT< SI GMA ( J J)/X t I ) 
YMIDf JJ,3)=SIGMAC JJ) 
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70 CONTINUE 60 1 
RETURN 502 
END 603 
SUBROUTINE KMATRX( NPTS» YI NT,COEF, I,HSIZE»KOUNT) 604 
IMPLICET REAL*8(A-H,0-Z) 605 
DIMENSION Y ÏNT C 6) .S(6 .6 } .COEF(6,4 >.SCALCC 6,6), SOUTC 36) ,YCAU(6) 606 

C 607 
C DETERMINE COEFS OF SPLINE FIT WITH FORTRAN SSP ROUTINE 'DGELG" AND 608 
C RETURN TO INTERP AS «COEF* 609 
C 610 

DO 10 M=1,NPTS 611 
DO 10 L=1 , NPTS 612 
K=M-L 613 
J=L-M 614 
IF<K,EQ,l)G0T0 8 615 
IF(J«EQ«1) GO TO 8 616 
IF(L.Ea.M) GO TO 9 617 
S(M,L)=O.DO 618 
GO TO 10 619 

8 S(M.L)=0.25D0 620 
GO TO 10 621 

9 S(M.L)=1.D0 622 
10 CONTINUE 623 

DO 15 J=l,NPT<i 624 
DO 15 K=1oNPT;; 625 

15 SCALC<J,K»=S<J,K) 626 
DO 16 J=1,NPTS 627 

16 YCALCJ) = YINT(J 1 628 
IF(NPTS»EQ,6) GO TO 25 629 
IX=0 630 
DO 17 L= 1 , NPT S 631 
DO 17 K=1,NPT;> 632 
IX=IX +1 633 

17 SOUTfIX1=SCALCCK,UI 634 
GO TO 26 635 

25 CALL DGELG <YCAL•SCALC,6,1•1.OE-16,IER) 636 
GO TO 27 637 

26 CALL DGELG IYCAL#SOUT•NPTS,I.1•OE-16,IER) 638 
27 CONTINUE 639 

DO 30 K=1,NPTS 640 
30 COEFd K, I )=YCAI_( K) 641 

IF(IER.NE.O) SO TO 99999 642 
RETURN 643 

99999 «RITE(6»2000) 1ER,KOUNT 644 
2000 FORMAT(/////,T:5,****** 1ER =•.I3.2X.•KOUNT =",14) 645 

RETURN 646 
END 647 
SUBROUTINE CAILCY ( I , NPTS , COEF , XMI D , HSI ZE , YHOLO . KOUNT ) 648 
IMPLICIT REAL*a(A-H,0-Z) 649 
DIMENSION X<5),F(S>,COEF(6,4J,XMIO<5),YHOLD(50,5) 650 
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c  651 
C CALCULATE MIDPOÏNT INTERPOLATED VALUES AND RETURN TO 'INTERP' AS 652 
C ARRAY •YHOLO* 653 
C 654 

DO 10 J=l,5 655 
10 X<J>=XMIDCJ) 656 

DO 20 J=l,5 657 
F(J)=0.D0 658 
DO 15 K=loNPT£. 659 
XK=K 660 
X1=X(J)-((XK-2.D0)*MS%ZE) 661 
HL=-2»D0*HSIZE 662 
HU=2.D0*HSIZE 663 
IF(Xl.GE.HL) GO TO 11 664 
F(J)=F(J)*O.DO 665 
GO TO 15 666 

11 H=-HSrZE 667 
IFCXl.GT.H) GO TO 12 668 
FÇj)=F{J)+(<C)Cl+(2.D0*HSiïZE))**3.D0)/(4.D0*(HSIZE**3.D01)*COEF(K,I 669 

1 } ) 670 
GO TO 15 671 

12 IF€XI•GT.O.DO» GO TO 13 672 
TERM^(HSIZE**3.D0)+((3.D0*(HSIZE**2.D0))*(Xl+HSIZE))+«(3.D0»HSIZE) 673 

l*(gXl+HSIZE)**2.DO))-(3.DO*([Kl+HSIZE)**3.DO)) 674 ^ 
TERM=(TERM/(4.DO*(HSIZE**3.D3)))*COEF(K.I) 675 ui 
F<IJ)=F( J l+TERM 676 
GO TO 15 677 

13 IF€Xa«GT.HSIZEÏ GO TO 14 678 
TERM=(HSIZE**3eD0)+((3.D0*(HSEZE**2.D0))»(HSIZE-X1)ï+<(3.D0*HSIZE) 679 

l»î < HSIZE-Xl2.D0})-(3.D0*((HSIZE-X1)**3.DO)) 680 
TERM=(TERM/(4.D0*(HSIZE**3.D0))>»COEF(K,I) 681 
F{ J )=Ft J )+TERiM 682 
GO TO 15 683 

14 IF(XI.GT.HU) GO TO 16 684 
TERM=((2.D0*HSIZE)-X1)**3.D0 685 
TERM=(TERM/(4.D0*(HSIZE*»3.D0I))*COEF(K,I) 686 
F(J)=F<J)+TERM 687 
GO TO 15 688 

16 F(JÏ=F{J)+O.DO 689 
15 CONTINUE 690 
20 CONTINUE 691 

DO 40 N=1.5 692 
40 YHOLO(KOUNT,N)=F(N) 693 

RETURN 694 
END 695 
SUBROUTINE DKABEL < XD TR o Y I NT î MA. NS 1 » N2 . X PNT, R AD , RDI • KT . XD , XB I G ,LZ 696 

l.DELIR.SIGMAY.Ll.IWT) 697 
DIMENSION KDTR{1).YINT( 1),RADIl).ROI(l).XBlGCl).DELIRf 1)oSEGENDC 5) 698 

1.SIGMAY(1),C0EFC5,5 »,OELCOFC5.5».RA(2) .XA(51),YA<51).YCHECKt51,5). 699 
20IFY(511.PERCNT<51).AVEPCTt 12) ,STDDEV(5).DEVAVEC5) •YCC51o5).NT AG« 5 700 
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3)f,ROST(5> 701 
DATA NTAG/0,0,0.0,0/ 702 
DATA RDST/1.0,1.0,1.0.1.0.1.)/ 703 
WRITE (6.1000» 704 

1000 FORMAT (///// T2,'INPUT DATA TRANSFERRED TO DKABEL*) 705 
WRITE (6.1001) 706 

1001 FORMAT (/.T4. IDEX*.T25.'XDT3«.T50,*VINT') 707 
DO 100 IOEX=l.IMA 708 

1002 FORMAT (/.T6,I2,T20,E11.4,T45«E11.4) 709 
100 WRITE (6,1002> IDEX.XDTRCIDEX>.YI NT< IDEX) 710 

DO 5 J=l,5 711 
SEGEN0<J)=0.0 712 
DO 5 1=1.5 713 
COEF(I.J)=0.0 714 

5 DELCOFtI•Jî=0.O 715 
C 716 
C SET UP ZONE SEGMENTS FOR POLY FIT (3 TO 5 ZONES I 717 
C 718 

NSEGS=NS1 719 
XBIG(LZ)=XBIGCLZ)/XD 720 
IF(NSEGS-4) 10,25,29 721 

10 CHECK = XBIG«l_Z )-0«3333333 722 
CHECK=ABS(CHECK) 723 
IF(CHECK«GT.0.100) GO TO 12 724 ^ 
IF<XBIG(LZ)-0.3333333) 11.11«12 725 cn 

11 SEGENDC 1 )=0 .450 726 
SEGEND(2)=0.750 727 
SEGENDC31=1.000 728 
NSEGS=3 729 
GO TO 30 730 

12 CHECK=XBIGCLZ)-0.6666667 731 
CHECK=ABSÎCHECK) 732 
IFCCHECKoGT.0.iOO) GO TO 14 733 
IF(XBIG(LZ)-0.6666667) 13.i:t.l4 734 

13 SEGENDC1)=0.350 735 
SEGEND(2)=0.T50 736 
SEGENDC3)=1.000 737 
NSEGS=3 738 
GO TO 30 739 

14 IFC XBIGCLZ)-0 .2333333 ) ll5,l'.j,16 740 
15 SEGENDC1)=0.3333333 741 

SEGENDC2)=0.6666667 742 
SEGENOC3)=l.0000000 743 
NSEGS=3 744 
GO TO 30 745 

16 IFCXBIGCLZ)-0.6666667) 17,19,19 746 
17 ïF(XBIGCLZ)-0.4333333) 18.13,19 747 
18 SEGENDCl»=0.250 748 

SEGENDC 2 ) = 0.(350 749 
SEGENDO ) = 1 .000 750 
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NSEGS=3 751 
GO TO 30 752 

19 IF(X8IG(LZ)-0,7666667) 20,20,21 753 
20 SEGENO(I>=0.300 754 

SEGEND(2)=0«550 755 
SEGENDO ) = 1 ,000 756 
NSEGS=3 757 
GO TO 30 758 

21 SEGENDt 1 î=0 .3:133333 759 
SEGEN0(2)=0«6666667 760 
SEGEND{3)=1.0000000 761 
NSEGS=3 762 
GO TO 30 763 

25 SEGENDd )=0.250 764 
SEGEND<2)=0.500 765 
SEGENOf 3 )=0-7«50 766 
SEGENDt4)=1.OOO 767 
NSEGS=4 768 
GO TO 30 769 

29 NSEGS=5 770 
SEGENO(I 1 =0.2 771 
SEGENO<2)=0.4 772 
SEGENDO ) =0.6 773 
SEGENDC4)=0.8 774 
SEGEND(5)=1.0 775 

30 CONTE NUE 776 
C 777 
C CALL ROUTINE SEGMNT FOR ZONE COEFS AND SIGMA VALUES 778 
C 779 

CALL SEGMNT fKDTR»Y INT. IMA,N51,NSEGS.NZ.COEF.OELCOF,SEGEND.SIGMAY. 780 
INTAGoIWT) 781 
DO 35 1=1.IMA 782 
XAtI)=XDTR<I) 783 

35 YAÎI3=YINT(II 784 
C 785 
C COMPARE CALCULATED TO INPUT Y VALUES FOR EACH ZONE 786 
C 787 

WRITE (6,2000) 788 
2000 FORMAT (/////.TIO,'REGION',T22.'3IST',T33.'CALCY',T4S,'REALY',T56. 789 

1'DIFF*,T73.'PERCENT',T88,'AVE PE9CENT'.T102.'WEIGHTED STD DEV) 790 
IMS1=NTAG(1) 791 
NSEG=NSEGS 792 
I20NE=1 793 
SUMPCT=0.0 794 
SUMERR=0.0 795 
AVEDEV=0.0 796 
YSUM=0.0 797 
DO 75 I = l,l[MS!l 798 
XCHEC2=XACK)»XA(I) 799 
XCHEC4=XCHEC2*XCHEC2 800 
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3000 

74 
2001 

75 

78 
76 

77 

200 

XCHEC6=XCHEC4+XCHEC2 

YCHICK( I^rf=COEF<*i?i ) +C COEF( 2» 1 » * XCHEC2 ) + ( C OEF (3 . 1  )*XCHEC4) +( COEF( 
14 1 1 ) *XCHEC6 ) +'l COEF( 5,1} •XCHEC8) 
OIFY« I>=YA( I) -YCHECKC I. 1 ) 
PERCNT(I )={DIFY( I)»100. )/YACI ) 
PERCNTCI)=ABS{PERCNTCI)) 
SUMPCT=SUMPCT+PERCNTFI> 
SUMERR = SUMERRKDIFY( I )*DIFY( I )/YA< I ) ) 
AVeDEV=AVEDEVKDIFYC I )»DIFYC I ) ) 
YSUKt=YSUM+YA( I ) 
IF(I.NE.IMSl) GO TO 74 
Xl= I 
AVEPCT(I)=SUMPCT/XI 
STOOEVC1 )=SQRTC SUMERR/< Xl-1oO ) ) 
OEVAVECl )=SQRT C AVEDEV/( X I-l .0) )/( YSUM/XI ) 
WRITE <6.3000) I20NE.XA(I).YCHECKC I , 1 ) ,YA(I ).OIFY(I ).PERCNT(I).AVE 

1PCT(I » ,STDDEV( 1).DEVAVEC1) ^ ^ ^ 
FORMAT (T12.I2»T20,F8«4*T32«F8.4*T44.F8.4»T54.Ell.4.T72.E11.4.T87» 

lEll«.4,T105oEl 1»4.T117,E11.4) 

SRITE(efzoo1) I ZONE •XA<1)•YCHECKC I«L) »YACI)•DIFYCI1«PERCNTCI L 
FORMAT ( T 12, I 2,T20»F8 .4 «T32 ,F'8.4,T44»F8.4,T54,E11.4.T72«E11.4) 
CONTINUE 
DO 80 J=2.NSEG 
NHOI_D = 0 
JJ=J-1 
N1=NTAG(JJ)+1 
N2=NT AG< J J 
SUMPCT=0.0 
SUMERR=0«0 
AVEDEV=0.0 
YSUM=0 «0 
IF €J»NE.NSEG) GO TO 78 
N2=IMA 
DO 79 K=N1 , N2 
XCHECl=XACK) 
XCHEC2=XA(K)*XA(K) 
XCHEC3=XCHEC2*XAC K) 

YCHICKCK?JF=COEFT1 ÎJ) +(COEFC 2,J )*XCHEC1) + (COEF(3.J)*XCHEC2)+CCOEF( 
14, JI*XCHEC3 )» ( COEF (5 , J) *XCHE (14) 
DIFY« K) = YA(K>-YCHECK(K,J) 
D IFY I = DI FY( K) •DI FY C K ]> 
IF <YA(K>«EQ.0.0} GO TO 200 
PERCNT (K )=ABS C ( DIFY ( K J "C 1 00 . 1 / YA { K ) Î 
DIF2=DIFV8 K)4DIFY(K)/YA(K) 
GO TO 201 
PERCNT (K 31 = 0 .0 
OIF2 = OIFV(tK Î+DIFYC K ) 

801 
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 
823 
8 24 
825 
826 
827 
828 
829 
830 
831 
832 
833 
834 
835 
836 
837 
838 
839 
840 
84 1 
842 
843 
844 
845 
846 
847 
848 
849 
850 

M 
M 
OO 
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NHOLD=NHOLD+1 351 
201 SUMPCT=SUMPCT4PERCNT( K) 852 

AVE0EV=AVEDEV+0IFYI 353 
YSUM=YSOM + VA( l< ) 854 
SUMERR=SUMERR+D:F2 855 
IF(K.NE.N2) G CI TO 20 2 856 
XK=N2-N1+1-NHOLD 857 
AVEPCT(J)=SUMPCT/XK 858 
XFREE=N2-N1 859 
IFCXFREE.LE.0•0) XFREE=1«0 860 
STDDEVt Jl = SQRr< SUMERR/XFREE1 861 
OEVAVE( J )=SQR1 ( AVEOEV/XFREE >/'( YSUM/t XFREE + l .0 ) > 862 
WRITE (6,3001! J , XAC K ) , VCHECf; t K . J > o Y A< K ) , OI FY ( K 1 , PERCNT ( K ) . AVEPCT { 863 

IJ c STDOE va J ) .OEVAVEt J ) 864 
3001 FORMAT ( T12 • I î> , T20 .FS4 , T32 o f-8» 4. T44 .F8 « 4 • T54 . E 1 1 «>4 • T72 • El 1 .4, T87 . 865 

iElt,4,Tl05.El3l.4,T117,Eli.4) 866 
GO TO 79 867 

202 WRITE (6.2002% J,XACK ) ,YCHECK«K«J> .YACK).DIFY«K>,PERCNT(K) 868 
2002 FORMAT < T 12 . I 2 . T20 » F8 «4 ,T32 . 8 . 4, T44 .F8 . 4 • T54 . E 11 « 4 ,T7 2. Ell .4 > 869 

79 CONTENUE 870 
80 CONTENUE 87 1 

WRITE (6.3999) 872 
3999 FORMAT (/////,T10.'WEIGHTED :5TO DEV DEFINED AS T1 5 .• SQUARE ROO 873 

IT OF: (SUM(D[FF**2/REALV))/[NUM PTS IN ZONE - 1)»•/•/.T10.»UAST C 874 
20LUMN: { SORT ([ SUM( OIFF»*2/( NPTS-1 )))/( MEAN VALUE REALY FOR ZONE)') 875 
WRITE (6,4000) 876 

4000 FORMAT (•/•••,T10.•REGION•,T22.•0 I ST•,T33.•CALCY• 3 877 
12=1 878 
DO 49 1=2. IMS I 879 
J = I-1 880 
XAVE=(XA(I)+XA(J))/2. 881 
XC2=XAVE*XAVE 882 
XC4=XC2*XC2 883 
XC6=XC4*XC2 884 
XC8=XC6*XC2 885 
YC(J.1 )=COEF( loi) + (COEF(2,l )*XC2)+{CQEF(3,1>•XC4) -K COEF(4. 1 )*XC6)+ 686 

l(COEF(S.l)*XCBD 887 
WRITE (6*4001) IZ.XAVE,YC(J.1> 888 

4001 FORMAT (T12.I 2,T20.F8.4,T32,F 8.4) 889 
49 CONTINUE 890 

DO 48 J=2.NSEG 891 
jj=j—1 892 
Nl=NTAG(JJ)+2 893 
N2=NTAG(J) 894 
IFCJ.NE.NSEG» GO TO 46 895 
N2=IMA 896 

46 DO 47 K = N1,N2 897 
K2=K-1 898 
XAVE=(XA(K)+XA(K2))/2. 899 
XC1=XAVE 900 
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XC2=XAVE*XAVE 90 1 
XC3=XC2+XAVE 902 
XC4=XC3*XAVE 903 
YC(K2,J î=COEF(I,J) + CCOEF(2» J)*XC1 I+(COEF< 3.J}*XC2 »+(COEF(4,J)•XC3 I 904 

l+{COEF(5.J»*XC4) 905 
WRITE (6.4002) J.XAVE•YC<K2.J) 906 

4002 FORMAT <T12.I 2,T20.F6•4,T32» F  8.4) 907 
47 CONTINUE 908 
48 CONTINUE 909 

C 910 
C CALCULATE RADIAL INTENSITY V/iA-UES BASED ON POLY FIT 911 
C 912 

500 RM=0.0 913 
X=SEGEND(11) 914 
X3=X**3 915 
X5=X**5 916 
X7=X**7 917 
RAl=COEF(2®l)*X+2.*COEF(3,l X3/3. + 3.*COEF(4,1 )*X5/5. + 4.*COEF(5.1) 918 
l*X7/7. 919 
RA2=-2.*RAl/3.141593 920 
DO 52 1  J=2i. NSEGS 921 
1=1 922 
XLC=SEGEND€JJ 923 

518 RA(I)=COEFC2.J)*ALOG(XLC)+2.*COEF(3,J)•XLC+3.*COEF(4,J > *XLC*XLC/2. 924 
l + 4.*COEF(5» J)*XLC*XLC*XLC/3. 925 
GO TO (519o520}.I 926 

519 1=2 927 
XLC=SEGENDCJ-1) 928 
GO TO 518 929 

520 RM1=-CRA(1 »-RA(2))/3.141593 930 
RM=RM1+RM 931 

521 CONTINUE 932 
RAO( 1 ) =RA2-0-RW 933 
RDI(1î=0.0 934 
KT=1 935 
R=0o0 936 
LC=l 937 

550 R=R4-XPNT 938 
IF(R.GT.SEGEND«NSEGS)) GO TC 600 939 
IF(R.GT«SEGEND(LC)) LC=LC+1 940 
KT=KT*1 941 
RDICKT)=R 942 
RM=0.0 943 
R2=R*R 944 
GO TO (575,555.555.555.555),LC 945 

555 X=SEGENO(LC) 946 
X2=K*K 947 
a=SQRT(X2-R2) 948 
B3=B*8*8 949 

556 RAi=COEF(2 oLC)•ALOG((X + B)/R2.»COEF(3.LC)*8+3./2•+ COEF(4,LC)•(X*B 950 
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l+R2*ALOG(< X»B)/R))+4.*COEF(5.LC)*(B3/3,+R2*B) 951 
RA2=-RAl/3»141593 952 
IF(LC.LT.NSEGS) GO TO 557 953 
RAD(KT)=RA2*RM 954 
GO TO 550 955 

557 LCUR=LC+1 956 
RM=0»0 957 
OO 565 J=LCUPdNSEGS 958 
1=1 959 
XLC=SEGENDCJ) 960 

558 X2UC=XLC»XLC 961 
A=SQRT(X2LC-R2) 962 
A3=A$A*A 963 
RA(I)=COEF(2.J)*ALOG(XLC+A)+Z.*COEF(3,J)*A+3./2.*COEF(4.J)*(XLC*A+ 964 

1R2*AL0G( XLC+A ) Î +4» *COEF(5,J )# l[ A3/3. +R2*A) 965 
GO TO (559.560),! 966 

559 1=2 967 
XLC=SEGENDaJ-1) 968 
GO TO 558 969 

560 RM1=-(RA(1)-RA(2))/3.%41593 970 
RW^RMl+RM 971 

565 CONTINUE 972 
RAD(ICTI = RA2+RM 973 
GO TO 550 974 ^ 

575 X=SEGEND(1) 975 f_, 
X2=X4:X 976 
B=SQRT«X2-R2) 977 
R4=R2*R2 978 
R6=R2*R4 979 
B2=80B 980 
B3=B2*B 981 
B5=B2*B3 982 
B7=B2*B5 983 
RAl=2.*COEF(2„1)*B+4.*COEF(3,1)*(B3/3.+R2*8)+6.*COEF(4.1)*(R4*B+2. 984 
l*R2*83/3.+B5/5. )+8 . »COEF (( 5 , 1 )*(R6*B+R4*B3+3.*R2*B5/5. + B7/7 . ) 985 
RA2=-RAl/3«141593 986 
GO TO 557 987 

600 DO 610 I=1,KT 988 
610 ROI(I)=RDI(I)*XD 989 

WRITE (6.5002) NSEGS.NSEGS.(SEGENO(I).1=1.NSEGS) 990 
5002 FORMAT (/•/.T5®•ZONE DIVISIONS F O R'.I3.2X.'SEGMENTS',//.TS.'REGION 991 

1(1) REGION( • • II . • )= » ,5( E l  1 . 4  ,5X) ) 992 

C CALCULATE SIGMA VALUES FOR RADIAL INTENSITIES 9|4 

DO 66 1=1,NSEGS 996 
66 RDST(I)=SEGEND(I) ?97 

DO 67 11=1,KT 998 
67 RDI(I1)=RDI(I1)/XD 999 

DO 90 1=1.KT 1000 

C 
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IFCRD r ( I I oGT.ROST< I  î  > GO TO f J  2 
G=SQRT ( RDST ( 1 ) *#2.-RD I ( E ) »*2 ., ) 
DEL1 = {2.*ABS< Gi•DELCOFC 2o 1) )+^4.*ABS(( (G**3.)/3.)+((RD 

1 ) «•DELCOFC 3 , 1) ) + (6. »ABS( ((RDIlI)**4.)*G)+((2./3.)*(RDI( 
1 ) )+(8.*ABS( < (RDI 
I)**2.)*(G**5.>)i 

}* 
1 . 

23. » ) + ( (1 ./5.)*(G**5. ) 3 ) *DELC ( ] IF(  4, 
3I(I)**4.)*(G**3.))*((3./S.)*(RDI( 
4))*DELCOFg5.11) 
DEL2=0.0 
DO 89 J=2oNSEGS 
K=J-1 
G J=SQRT( ROST( J ) ••2 o-RD I ( I )• »;> . ) 
GK=SQRTCRDSTCK)**2o-RDI(I 
ADO=( ABS( ALCJGi; ( RDST ( J )+GJ)/(RDST( K Î+GK J ) )*DELCOF( 2, J) I 

lGK)*DELCOF(3, J) ) + ( 1 .5*ABS( (RI>ST( J ) »G J ) - ( RDST ( K 1 *GK ) + ( ( 
2Ai_OG( ( RDST ( J) RDST(K)+GK )))) *DELCOF( 4,J)) + (4„*ABS 
3« )-((GK**3.)/3.)+((RDI(I)**2.)*(GJ-GK) ) )»DELCOFÏ 5„J)) 

89 OEL2=DEU2+ADD 
DEHRII) = < (OEl.l +DEl_2)/3. 1415)3**100.0 
DELIR( I»=DELU?( I )/RAD(I ) 
GO TO 90 

82 IF(RDI(I J«LE.RDST(2 ) ) L=2 
IF(ROI C I ) •LE.ROSTO) > L=3 
IF(ROI(I).LE.R0STC4)) L=4 
IF(RDI(I J.LE.RDSTC5)) L=5 
IFÎRDK I I .GT,RDST(5J ) GO TO 32 
G=SQRT(RDST(LI**2.-RDI(I)**2.) 
RD12=RDI(I1*RDI(I) 
XTMLOG=AL.OG((RDST<U)+GI/RDI ( I t  )  
DEH= ( AaS(XTMI_OG)*DEUCOF< 2.L) ) + (2.*ABS(G) *DE_CQF( 3.L) ) 
10ST(L)*G)+(RD I2*XTML0G) )*DEL:0F(4,L) ) + (4.*ABS((<G K*3.) 
2))*DELCOF(5.L)) 
IF(L.LT.NSEGS) GO TO 87 
DEURt I)=(DEL1/3.141593)*100.0 
DIFRNC=RAO<I)-0.0 
A8DIF=ABS« DIFRNCI 
IF(A8DIF.LT.0.0000001) GO TO 90 
DEL IR ( I)=DELIIR( I )/RAD(I ) 
GO TO 90 

87 N1=L+1 
DEL2=0.0 
DO 88 M=N1»NSEGS 
N=M-1 
GM=SQRT(ROSTÏ W)**2.-RDI(2)**2.) 
GN=SQRT<RDST(N)**2.-RDI(I)**2.) 
AOD=( ABS( ALOG( C RDST ( M )+GM> / ( R:DST( N)+GN) ) ) *OELCOF < 2 . M ) » 

lGN)*DELCOFC3»M) > + < 1.5*ABS((RDST(M)•GM)-(RDST( N)*GN)+(( 
2ALOG((RDST(Ml»GM)/(RDST(N)+GM))1)*DELCOF(4,M))•(4,*ABS 
3.»-((GN**3»1/3.)+((RDKI)**2.)»IGM-GN))>*DELCOF(5•M)) 

88 DELI=DEL2+A0D 
DE«_IR( I) = ((OELS +OEL2)/3.141593)*l 0 0.0 

I(I)**2,»»G) 
I )**2.)*(G** 
*6.> »G)+(( RD 
/7.)*(G**7.) 

+(2.*A8S(GJ-
RDI(I)**2.)* 
(<(GJ**3.)/3 

+(1.5*ABS((R 
/3.)+(RDI2*G 

( 2« *ABS C GM-
RDI(î)**2.)* 
(((GM**3.)/3 

1 0 0 1  
1 0 0 2  
1003 
1004 
1005 
1006 
1007 
1008 
1 009 
1 0 1 0  
1011 
1 0 1 2  
1013 
1014 
1015 
1016 
1017 
10 13 
1019 
1020 
1021 
1022 
1023 
1024 
1025 
1026 
1027 
1028 
1029 
1030 
1031 
1032 
1033 
1034 
1035 
1036 
1037 
1038 
1039 
1040 
1041 
1042 
1043 
1 044 
1045 
1046 
1047 
1048 
1049 
1050 

M 
ru 
ro 
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DEL IR{ I )=DELIR( r l/RAD(I ) 1051 
90 CONTINUE 1052 

IF(I.EQ.KT) GO TO 93  1053 
9 2  K T = I - 1  1 0 5 4  
93 DO 91 12=1.KT 1055 
91 RO I<I 2»=ROI(I 2 )*XO 1056 

SUMR=0. 1057 
WRITE (6,60 00) 1058 

6000 FORMAT (/////,T29.'I'«T45,'R&[(I)',T67.'RAD(I)'.T83.*DELTA RAD IN 1059 
IPERCENT*) 1060 
DO 23 K=1,KT 1061 

101 FORMAT ( 27X. 1 2 1 .  2{ 1 2X . El 1  « 4) ,1 90«E 1 1 . 4) 1062 
SUMR=SUMR+RAD<KJ 1063 

23 WRITE (6.101) K,ROK(KÎ.RAD(K) ,DEL IR(K> 1064 
WRITE (6.102) SUMR 1065 

102 FORMAT (///.TaO.'SUM I I  ( R ) = • .2X.E11.4) 1066 
WRITE (6.5000) 1067 

5 0 0 0  F O R M A T  C / / / • / ,  T 1  0  ,  »  J  •  j T  1  5  ,  •  I  '  . T 3 0  ,  •  D E L C O F  (  I  ,  J  )  •  )  1 0 6 8  
D O  2 8  J = 1 » N S E G  1 0 6 9  
D O  2 8  1 = 2 * 5  1 0 7 0  

5001 FORMAT ( T9. 12 i.T 1 4, I 2 , T30 ,E 1 1 .. 4 ) 1071 
28 WRITE (6.5001] J,I.DELCOFtI,J) 1072 

IF (t_l«EQa2) GO TO 300 1073 
DO 299 NABS=1„KT 1074 

299 RAO(NA8S) = ABS (:RAD(NABS) ) 1075 
300 RETURN 1076 

END 1077 
SUBROUTINE SEGMNT (XA,YA» IMA . NS1.NSEGS. NZ.COEF.DELCOF,SEG.SIGA,NTA 1078 

IGoïWT) 1079 
DIMENSION RELCOF(5,5) , S RELC ( !5 • 5 ) . FTEST 5 ( 5 ) . FT E ST6 ( 5 ) . FTEST 7 ( 5 ) 1080 
D KMENS ION XA( ] ) .YA( 1 ) ,COEF( 5 ,5) ,DEUCOF(5.5) .SEG( 1 ] •SIGA(1) .PERCT(7 108 1 

1 > «FTEST1 (5 ) ,FirEST2« 5) ,FTEST3 [ 5) ,FTEST4 (5) .NTAG( 5) , XSTOR( 11.5). YSTO 1082 
2R(:1*5).SSTOR C 11.5) ,XFIT(35) .VF IT(35).SFIT(35) .FTEST(5).VCALC(35)• 1083 
3REAI_C(5) .SIGMAC(S) . RE(_C (5 ) , S Î GMAR < 5 ) ,CHISQR(5) 1084 
DATA FTEST1/16200.0.198.0.55,6.31.3,22.8/,FTEST 2/AO50.0.98.5,34. 1 , 1085 

12 1.2.16.3/.FTEST3/648.0.38.5,17.4.12.2.10.0/,FTEST4/161.0*18.5.10. 1086 
21 ,7.71 ,6.61/.PERCT/0.5.1«0.2.5,5.0,10.0,25.0.50.0/ 1087 
DATA FTEST5/3 9.9.8.53.5.54,4,54.4.06/.FTEST6/5.83*2.57,2.02.1.81,1 1088 

1.69/,FTEST7/1.00,0.667,0.585,0.549,0.528/ 1089 
GO TO (1,3,5.7,11,21.31),NZ 1090 

1  D O  2  1 = 1 , 5  1 0 9 1  
2 FTEST(I)=FTEST1(I) 1092 

GO TO 9 1093 
3 DO 4 1=1,5 1094 
4 FTEST(I)=FTEST2(I) 1095 

GO TO 9 1096 
5 DO 6 1=1,5 1097 
6 FTEST( I)=FTEST3( I I 1098 

GO TO 9 1099 
7 DO 8 1=1.5 1100 
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8 FTEST ( I) -FTEST4 ( I ) 
GO TO q 

11 DO 12 1=1,5 
12 FTEST(E)=FTEST5tI) JJ04 

GO TO 9 
21 DO 22 1=1.5 
22 FTEST{ I )=FTEST6( I ) 

GO TO 9 nil 
31 DO 32 1 = 1,5 
32 FTEST< I l = FTEST7( I ) XiT 

1000 FO^MWT^ÎÎHl^TlsT^RADIAL*INTENSITY DISTRIBUTION CALCULATION'.//.T15 1112 
I,«ABEL INVERSION UTILIZING WEIGHTED LEAST-SQUARES POLYNOMIAL FITTI 
2NG OF THE LATERAL INTENSITY D[ST3IBUTION"./,T20.'F-TEST FOR SIGNIF HÎ2 
3ICANCE OF ADDED COEFFICIENT FOR',F6.2,2X.«PERCENT PROBABILITY OF E 1115 
EXCEEDING THE F-VALU E',.//« T25THE LATERAL I(X) PROFILE HAS BEEN DI 1116 
5VIOED INTO® .13,2X,« ZONES' ) 

1001 FORMAT^f/////!T15. «ZONE DIVISitONS ON REDUCED RADIUS SC ALE « , / , T I 5 , • 11 19 
IZONE NUMBER'.T35.'DISTANCE') 1120 
DO 10 I=1.NSEGS 

1002 FORMAT (T20,I2,T32,E14.7) 
10 WRITE (6.1002) I.SEGCI) w 

WRITE (6.2000) (FTESTt I }. 1= 1 , 5) 1,^% 
2000 FORMAT (•/,T15 .•FTESTt 1Î FT bSTC5)=•» 5(2X,El 3.6) ) ÎÎff 

WRITE (6,1003) 1 1 26 

1 1 35 
1 1 36 
1 137 

2*+* ,4X»' D*X** 21 ' ,4X*" + ".4X.*E^X**4« .//,T20,'REGION' . 2X . ' DEG ' . 1 9 X . ' A 11 29 
3' . 1 4X , ' B' o 14X. "C ' . 14X ' D" , 1 4)( , ' E' .///) J J 
DO 15 J=1 « NSEGS }î:f^ 
DO 15 1=1.IMA .1^^ 
IF(XA( I).GT.SE G(J) ) GO TO 15 J J 
NTAG(J)=I 

15 CONTINUE 
N1=NTAG(1i 
DO 20 I=1«N1 11 
XSTO»( I, 1 )=XA( I ) H So 
YSTOR( I . 1 Î=YA< I ) Hfn 
SSTOR(I.1Î=SIGA(I) 

1 1 42 
1143 

N3=NTAG(LC) Î}ts 1=0 114D 
DO 25 J=N2.N3 
1=1^1 ii4n 
xsTOR ( I ,LC)=x / i  (  J >  

20 
DO 25 LC=2,NSEGS 
NJ=LC-1 
N2=NTAG(N1)+1 

1 1 46 
1 1 47 

YSTOR(I.LCI=YA(J) 
25 SSTOR(I.LC)=SIGA(J) 

1 149 
1 150 
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DO 999 LC=1»NSEGS 
IF(NSEGS-4) 100.200.300 

100 GO TO C1 10. 12C.I 30 J .UC 
1 10 N = NTAG( 1 ) 

DO 115 1=1,N 
XFI T{ I ) = XSTOR { I , 1 ) $*2 
YF I T( 1 ) = YSTOR(1,1) 

115 SFST(I)=SSTOR<I.1) 
I=N 
DO 116 J=1.3 
1  =  1 + 1  
XFIT( I l = XSTOR< J.2)**2 
YFIT( I ) = YSTOR(: J.2) 

1 16 SFITC I ) = SSTOR<: J,2) 
NFIT=N+3 
GO TO 500 

120 Nl=NTAG<l)-2 
N2=NT AG( 1 > 
N3=NTAG(2) 
1 = 0 
DO 125 J = NI,N;> 
1 = 1 + 1 
XFÏTC I >=XSTC« <[ J . 1 > 
YF ITf I ) = YSTOR H J.1i 

125 SFIT( I ) = SSTORi[ J . 1 Î 
NN=N3-N2 
DO 126 J=1.NN 
1 = 1 + 1 
XFITd I ) = XSTOR [J.2) 
YFITdIJ=YSTOR(J.2) 

126 SFITC I )=SSTORi[ J.2) 
DO 127 J=l,3 
1 = 1 + 1  
X F I T ÎIJ=XSTOR(J.3) 
Y FIT(I)=YSTOR(J.3) 

127 SFITHI)=SSTOR(J.3) 
NFÎT= I 
GO TO 50 0 

130 N1=CNTAG(2>-NTAGCl))-2 
N2=NTAG(2)-NTAG(1) 
N3=NTAG(3)-NT AG(2) 
1 = 0 
DO 135 J=Nl.N2 
1 = 1 + 1  
XF IT( I )=XSTOR Î J .2) 
YFIT( I ) = YSTOR{J.2) 

135 SFIT(I)=SSTOR<J.2) 
DO 136 J=1.N3 
1 = 1 + 1  
XF IT( I )=XSTOR(J.3) 

1151 
1 152 
1 153 
1 154 
1 155 
1 156 
i 157 
1 158 
1 159 
I 1 60 
1  1 6 1  
1 1 6 2  
1163 
1 164 
1 165 
1 166 
1 167 
1  1 6 8  
1 169 
1170 
1171 
1 172 
1173 
1 174 
1 175 
1 1 76 
1 177 
1 1 78 
1 179 
1  1 8 0  
1181 
1 182 
1 183 
1 184 
1185 
1  186  
I 187 
I I  8 8  
1 189 
1 190 
1191 
1192 
1 193 
1 194 
1 195 
1 196 
1 197 
1 198 
1 199 
1 2 0 0  
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YFIT( I) = YSTOR{J.3» 
136 SFIT(I)=SSTOR(J.3> 

NF I T=I 
GO TO 500 

200 GO TO (210.220,230,240*,LC 
2 10 N l = NT AG< 1 1 

N2 = NT AGC 2)-NTAG{ 1 ) 
1 = 0  
DO 215 J=1.N1 
1  =  1 + 1  
XFIT( I ) = XSTORfJ,l)**2 
VF IT( I ) = YSTOR C J » 1 ) 

215 SFITC I >=SSTOR(: J, 1 ) 
DO 216 J=1,N2 
1  =  1 + 1  
XF IT( I ) = XSTOR (. J ,2) **2 
YFITt I ) = YSTORCJ,2) 

216 SFIT( I ) = SSTOR([ J «2) 
NFÎ T= I 
GO TO 500 

220 Nl=NTAG(l)*3/4 
N2 = NTAGC 1 > -Nl-H 
N3=NT AG( 1 ) 
N4 = NTAGC2 >-NTAG(1) 
N5=(NTAG(3)-NTAG(2))*3/4 
1 = 0  
DO 22 5 J=N2.N3 
1  =  1 + 1  
XFITt I) = XSTOR{J.l) 
YFIT( I ) = YSTORC J.1) 

225 SFIT( I )=SSTOR ( J , 1 ) 
DO 22 6 J=1»N4 
1 = 1 + 1  
XFITt I )=XSTORtJ.2) 
YFIT( I ) = YSTORCJ.2) 

226 SFIT(I)=SSTOR(J,2) 
DO 227 J=1,N5 
1 = 1+1 
XFIT(I)=XSTOR(J.3) 
YFITCI)=YSTOR(J,3) 

227 SFIT(I)=SSTOR<J,3) 
NFIT= I 
GO TO 500 

230 Nl=(NTAG(2)-NTAG(l))*3/4 
N2={NTAGC2)-NTAG(I))-Nl+l 
N3=NTAG< 2)-NTAG( 1 ) 
N4=NTAG{3)-NTAG(2) 
N5=(NTAG(4)-NTAGC 3) )*3/4 
1 = 0  
DO 235 J=N2,N3 

1 20 1 
1 2 0 2  
1203 
1204 
1205 
1  2 0 6  
1207 
1 2 0 8  
1 209 
1 2 1 0  
1211 
1 2 1 2  
1213 
1214 
12 15 
1216 
1217 
1218 
1219 
1 2 2 0  
1 221 
1 2 2 2  
1 223 
1 224 
1225 
1 226  
1227 
1 228 
1 229 
1230 
1231 
1 232 
1233 
1234 
1235 
1236 
1237 
1238 
1239 
1240 
1 241 
1 242 
1 243 
1 244 
1 245 
1246 
1247 
1 240 
1249 
1 250 
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1  =  1 + 1  
XFiT( I > = XSTOR { J . 2) 
YF IT( I ) = YSTOR{J.2) 

235 SF ITC I ) = SSTOR(J.2) 
DO 236 J=1.N4 
1 = 1+1 
XFITÎ I ) = XSTOR{J.3> 
VFIT(I>=YSTOR(J.3) 

236 SF ÎT« I )=SSTOR ( J »3) 
DO 237 J = 1« N5 
1  =  1 + 1  
XFITt I >=XSTOR(IJ .4) 
YFITCI)=YSTOR(J.4) 

237 SFIT<r)=SSTOHÎJ.4} 
NFIT=I 
GO TO 50 0 

240 N1=NTAG(3Î-NTAG(2) 
N2=NTAG(4)-NTAGC3) 
1 = 0  
DO 245 J=1»N1 
1  =  1 + 1  
XFIT(I)=XSTOR(J,3) 
YFIT< I » = YSTOR(J »3) 

245 SFIT(I)=SSTOR(J.3) 
DO 246 J=1,N2 
1  =  1 + 1  
KFIT(I)=XSTOR(J,4) 
YFIT< I ) = YSTOR ( J ,4) 

246 SFITC I ) = SSTOR< J.4) 
NFIT=I 
GO TO 500 

300 GO TO C310«320«320»320.330» .l-C 
310 N1 = NTAGC1) 

N2=NTAGC2)-NTAG(1) 
1=0 
DO 315 J=i.Nl 
1  =  1 + 1  
XF ITC I )=XSTORCJ,l)**2 
YFITC I )=YSTOR(: J. 1) 

315 SFITC I ) = SSTORCJ,1 ) 
DO 316 J=1.N2 
1=1+1 
XFITfi I ) = XSTOR([ J.2)**2 
YFITC I )=YSTC3Rl! J .2» 

316 SFITC I )=SSTORi! J ,2) 
NFIT=I 
GO TO 500 

320 IF1LC.NE.2) GO TO 32: 
N1=NTAGC1) 
N2 = NTAGC 2)-NTAG( 1) 

1 251 
1252 
1253 
12 54 
1 255 
12 56 
1257 
1258 
1259 
1260 
1261 
1 2 6 2  
1263 
I 264 
1265 
1266 
1 267 
1268 
1269 
1 270 
1271 
1272 
1273 
1274 
1275 
1276 
1277 
1278 
1279 
1 2 8 0  
1281 
1282 
1 283 
1284 
1285 
1286  
1 287 
1288  
1289 
1290 
1291 
1 292 
1293 
1294 
1295 
1296 
1297 
1298 
1299 
I 300 
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N3 = NTAGf 3)-NTAG(t 2) 
GO TO 324 

321 LCL1=LC-1 
LCL2=LC-2 
LCU=LC+1 
N1=NTAG(LCL1)-NTAG(LCL2) 
N2=NTAG(LC>-NTAG(LCL.l ) 
N3 = NTAG< LCU)-NTAG(LC) 

3 24 1=0 
DO 325 J=1«N1 
1 = 1+1 
XFIT( I )=XSTOR« J.LC-1 ) 
YFITC I ) = YSTOR«J.LC-1 ) 

325 SFIT(I)=SSTOR(J,LC-l) 
DC 326 J=1,N2 
1  =  1 + 1  
XFITC I )=XSTOR(J,LC) 
YFITd I > = YSTOR ( J . LC li 

326 SFIT?I)=YSTORtJ.LCÎ 
DO 32 7 J = 1 , N3 
1  =  1 + 1  
XFIT(I)=XSTCRIJ.LC+1) 
YFITC I) = YSTOR« J ,l_C+ 1 ) 

327 SF ITU I ) = SSTOR(J#LC+1) 
NFIT=I 
GO TO 50 0 

330 N1=NTAG(4)-NTAG(3) 
N2=NTAG( -NT/iG< 4 ) 
1 = 0 
DO 335 J=t.Nl 
1  =  1 + 1  
XFIT( I ) = XSTOR(J.4) 
YFIT( I ) = YSTOR< J .4 ) 

335 SFIT(I)=SSTOR(J,4» 
DO 336 J=1.N2 
1  =  1 + 1  
XFITC I >=XSTOR< J.5) 
YFIT(I>=YSTOR(J.5> 

336 SFIT( I > = SSTOR(: J ,5) 
NFIT=I 

500 SUMS=0.0 
DO 510 1 = 1 » IMA 

510 SUMS=SUMS+SIGA(I) 
IF(SUMS.GT.0.0) GO TO 520 
I WT = 0 

520 NEVEN=0 
NORDER=4 
MODE=IWT 
NUMCOF=0 
MF Î T=NFIT-1 

130 I 
1 302 
1303 
1304 
1305 
1306 
1307 
I 308 
1 309 
1310 
1311 
1312 
1313 
1314 
1315 
1316 
1317 
1318 
1319 
1320 
1321 
1322 
1323 
1324 
1325 
1 326 
1327 
1328 
1 329 
1330 
1 331 
1332 
1 333 
1334 
1335 
1336 
1337 
1336 
1339 
1340 
134 1 
1 342 
1343 
I 344 
1 345 
1346 
1 347 
1 348 
1 349 
1 350 
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I Ft (MFIT-NORDER)«GT.O) GO TO 5 24 1351 
NORDER=3 1352 
IF( (MFIT-NORDERÎ ,GT.O ) GO TO 524 1353 
NORDER=2 1354 
IF((MFIT-NQRDER).GT.O) GO TO 524 1355 
NQRDER=1 1356 

524 CALL FITPQL«XFIT,YFIT,SFIT.NFIT.NORDER.NEVEN,MODE»FTEST.YCALC.REAL 1357 
IC.SIGMAC.RELC.SÎGMAR,CHI »NUMCOF) 1358 
CHISQR(LCl=CHI 1359 
DO 525 1=1.NUMCOF 1360 
COEF(I„LC)=REALC(I) 1361 
OELCOF(I.LCÎ=SIGMAC(I) 1362 
RELCOF(I.LC)=RELC(I) 1363 

525 SRELC(I,LC)=SIGMAR(I) 1364 
NPLUS=NUMCOF+I 1365 
IF(NPLUS«GT.5Î GO TO 527 1366 
DO 526 I=NPLUS,5 1367 
PEALC(I)=0«0 1368 
RELCOFt I »LC ) = 0,0 1369 

526 SRELC(I.LC>=OoO S370 
527 DO 530 1=1.5 1371 

TEST=ABS(COEFCI.LC)) 1372 
IF(TEST.GTo0»0) GO TO 530 1373 
NPOLY=I-2 1374 
GO TO 532 1375 

530 IF(I.EQ.5) NP0LY=4 1376 
532 WRITE<6.1004} LC,NPOLY.(REALCCI).1=1.5) 1377 

1004 FORMAT(T22- II ,6X,Il»14X.E13«e ,i4(2X.E13.6) ) 1378 
WRITE<6,10C8I «RELCOFtX«LC).I~1.5) 1379 

1008 FORMAT (T22.'RELATIVE COEFS = •,3X,5(2X,E13.6)) 1380 
WRITE(6»1005J LC.CHISQR(LC).IWT.NUMCOF 1381 

1005 FORMAT(T40* 'REDUCED CHI-SQUAPE FOR REGION'. 12,' = •.E13.6«2X.•WE IG 1382 
IHT CODES'.12.2X,'NO. COEFS=*,[2,//) 1383 

9 99 CONTINUE 1384 
RETURN 1385 
END 1386 
SUBROUTINE FITPOLf X. Y,,SIGMAY. NPTS .NORDER. NEVEN . MODE.FTEST. YFIT.A.S 1 387 

1 IGMAA.B.StGMAEi.CHISQReNTERMS) 1388 
DOUBLE PRECISION P«8ETA.ALPHA ,CHI SO,DSORT 1389 
DI MENS ION X(1).Y(1).SIGMAYC 1 : ,FT5ST(1).YFIT(1).A(1) .SIGMAA( l).B(l) 1390 

1.SIGMA8(1D 1391 
DIMENSION WEIGHT(51).P(51.5),BETA(5).AUPHA(5.5) 1392 

C 1393 
C ACCUMULATE WEIGHTS AND POWER SERIES TERMS 1394 
C 1 395 

11 NTERMS=1 1396 
NCOEFF=l 1397 
JMAX=NORDER+l 1398 

20 DO 40 1=1«NPTS 1399 
21 IF(MODE) 22.27,29 1400 



www.manaraa.com

22 IF(Y(I)» 25.27,23 1401 
23 we IGHT( I J=1 .0/Y( I) 1 402 

GO TO 31 1 403 
25 WEIGHT(I)=I.0/[-Y(I>) 1404 

GO TO 31 1405 
27 WEIGHTf I ) = 1 .0 1 406 

GO TO 31 1407 
29 WEIGHT(I)=1.0/[SIGMAYtI )**2) 1408 
31 P(I.11=1.DC 1409 

DO 36 L=1,NORDER 1410 
36 P(I ,L+1 )=X( I ) * * L  141 1 
40 CONTINUE 1412 

1413 
ACCUMULATE MATRICES ALPHA AND BETA 1414 

1415 
51 DO 54 J=1»NTERMS 1416 

BETA*J)=0.00 1417 
DO 54 K=1,NTERMS 1418 

54 ALPHA(J,K1=0,D0 1419 
61 DO 66 I=1»NPTS 1 42 0 

DO 66 J=1.NTEAMS 1421 
SETA* J)=BETA(J>+P( I .J)*Y< I)*WEIGHT( I) 1422 
DO 66 K=J.NTERMS 1423 
ALPHA(J.K)=ALPHACJ.K)+P(I.J)*P(I.K)*WEIGHT(I) 1424 

66 ALPHA ( K» J) = ALPHA( J t K ) 1425 
1426 

DELETE FIXED COEFFICIENTS 1427 
1428 

70 IF(NEVEN) 71.91.81 1429 
71 DO 76 J=3.NTERMS.2 1430 

BETA( J ) = 0.00 1 431 
DO 75 K=l,NTERMS 1 432 
ALPHAt J.K>=O.DO 1 433 

75 ALPHA(K.J)=0«D0 1 434 
76 ALPHA(J.J)=l.DO 1 435 

GO TO 91 I  436 
81 DO 86 J=2.NTERMS.2 1437 

BETA(J)=0.D0 I 438 
DO 85 K=l,NTERMS 1 439 
ALPHA(J,K ) = 0.00 î 440 

85 ALPHA(K.J)=0.DO 1441 
86 ALPHA < J,J) = l .DO 1 442 

1 443 
INVERT CURVATURE MATRIX ALPH/, 1444 INVERT CURVATURE MATRIX ALPH/, 

1 445 
91 DO 95 J=1.J MAX 1 446 

A( J ) = 0 .0 1 447 
SIGMAA(J )=0.0 1 448 
B< J) = 0 .0 1 449 

95 SIGMABt J)=0.0 1 450 
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DO 97 I=1,NPTS 1451 
97 YFIT( I 1=0 .0 1452 

101 CALL MATINV(ALPHA,NTERMS,DET) 1453 
IFCOET) 111.103«111 1454 

1 03 CHISOR=0.0 1455 
GO TO 170 1 456 

1 457 
CALCULATE COEFFICIENTS, FIT, AND CHI SQUARE 1 458 

1 459 
111 DO 115 J=1,NTERMS 1 460 

DO 113 K = 1 , NTERMS 1 461 
î 13 ACJ) = A(J )+BETA(:K)*ALPHA( JdK) 1462 

DO 115 I=1,NPTS 1 463 
r 15 YF i t (  î  » = YFIT< I .»+A< J ) *P'{ I . J> 1464 
1  21 CHÏSQ=0.D0 1 465 

DO 123 1=1,NATS 1 466 
î 23 CH3SQ = CHIS0+( Y([ I )-YFI T( I) 3 2 f WE I GHT ( I ) 1467 

FREE=NPTS-NCOEI-F 1468 
CHISOR=CHISO/FREE 1469 

1470 
TEST FOR END OF FIT 1471 

1 472 
1 31 IFUNTERMS-JMAX) 132.151.151 1473 
132 IF(NCOEFF-2) 133,134,14 1 1474 
133 IFtNEVEN) 137,137,135 1475 
134 IFdNEVEN) 135,137,135 1476 
1 35 NTERMS=NTERMS+2 14 77 

GO TO 138 1 478 
137 NTERMS=NTERMS+1 1479 
138 NCOEFF=NCOEFF+I 1 480 

CHISQ1=CHISQ 1481 
GO TO 51 1482 

141 FVALU£=<CHISQ1-CHISQ)/CHISOR 1 483 
IFIFTEST(NTERMSÎ-FVALUE) 134,143,143 1484 

143 IF(NEVEN) 144,146,144 1485 
144 NTERMS=NTERMS-2 1486 

GO TO 147 1487 
1 46 NTERMS=NTERMS-1 1488 
1 47 NCOEFF=NCOEFF-l 1489 

JMAX=NTERMS 1490 
1 49 GO TO 51 1491 

1492 
CALCULATE REMAINDER OF OUTPUT 1493 

1 494 
1 51 IFCMODE) 152,154,152 1495 
152 VARNCE=1.0 1496 

GO TO 155 1497 
154 VARNCE=CHISQR 1498 
1 55 OO 156 J=1,NTERMS 1499 
1 56 S I GMAAf J )=DSQRT{ VARNCE* ALPH A ( J , J) ) 1 500 



www.manaraa.com

c 
c 
c 

c 
c 
c 

c 
c 
c 

161 IF<A{1)) 162.170.162 
162 DO 166 J = 2.NTE:RMS 

ÎF<A(J)) 164.166.164 

î 65 S E GMAB {J)=B<J)*DSORTC<(SIGMAA( J)/A(J) )*#2+(SIGMAA(l)/A( l) )**2-2«0*V 
IARNCE*ALPHA(J, l)y{A(J )*A( 1) ) ] 

166 CONTINUE 
B( 1)=1.0 

170 RETURN 
END 
SUBROUTINE MAT INV< ARRAY,NORDER,DET) 
DOUBLE PRECISION ARRAY*AMAX.SAVE,DABS 
DIMENSION ARRAY(5.5).IK(5).JK(5) 

10 DET = 1 ,0 
11 DO 100 K=l,NOADER 

FIND LARGEST ELEMENT ARRAY(I . J> IN REST OF MATRIX 

24,24,30 

AMAX=0.D0 
21 DO 30 I=K*NORDER 

DO 30 J=K,NORDER 
23 IF(DABSC AMAX)- DABS(ARRAYC I,J> )) 
24 AMAX=ARRAYCI,J) 

IK(K)=I 
J K C  K ï  =J 

30 CONTINUE 

INTERCHANGE ROWS AND COLUMNS TO PUT AMAX IN ARRAY C K,K) 

31 IFC AMAX) 41.32.41 
32 DET=0.0 

GO TO 140 
41 I=IK(K) 

I FC I-K ) 21 . SI ,,43 
43 DO 50 J=1.N0RDER 

SAVE=ARRAYCK,J) 
ARRAY C K.J)=ARRAY(I .J) 

50 ARRAY C I . J)=-SAVE 
51 J=JKCK) 

IFCJ-K) 21 . 61 ,,53 
53 DO 60 I=l,NORDER 

SAVE = ARRAYC I. K) 
ARRAY C I » K ) = ARR AYI I . J ) 

60 ARRAYCI.J)=-SAVE 

ACCUMULATE ELEMENTS OF INVERSE MATRIX 

61 DO 70 1=1.NORDER 
IFCI-K) 63.70•63 

63 ARRAYC I ,K) = -ARRAYC I .K )/AIWAX 

150 1 
1 502 
1 50 3 
1 504 
1505 
1 506 
1507 
150 8 
1509 
1 51 O 
1 51 1 
1512 
1513 
1 51 4 
1515 
1516 
1517 
1518 
1519 
1 520 
1521 
1522 
1 523 
1524 
1 525 
1526 
1527 
1528 
1529 
1530 
1 531 
1532 
1 533 
1534 
1 535 
1 536 
1537 
1538 
1539 
1540 
1541 
1 542 
1543 
1544 
1545 
1546 
1 547 
1 548 
1 549 
1550 

UJ 
rv> 
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1551 
1 552 70 CONTINUE 

7 1 DO 80 I=I»NORDER .ce 
DO 80 J=1,NCRDER J2c? 
IF(I-K) 74,80,74 J 
IF(J-K) 75,80,75 
ARRAY( I , J)=ARRAY(I,J)+ARRAY(1 ,K)» ARRAY(K,J) J556 

C 
C 
C 

74 
75 % *T .. . . ... .. . «CCT 
80 CONTINUE 
81 DO 90 J=loNORDER J f 

IF(J-K) 83,90,83 î 
83 ARRAVCK,JJ=ARRAYCK,J)/AMAX 
90 CONTINUE J 

ARRAYCK,Kî=l,0/AMAX *2?^ 
100 DET=DET*AMAX 1564 

RESTORE ORDERING OF MATRIX îfff 
1 566 

101 DO 130 L=l,NORDER îffi 
K=NORDER-L+l ,Ita 
J=IKtK) illo 
IFIJ-KI 111,111,105 

105 DO 110 l = l,NOP[DER 
SAVE=ARRAY( I,K1 \%1.% 
ARRAYC I ,K)=-ARRAY( ï  , J 1) 

110 ARRAYC I,JÎ = SA\'E fg'* 
111 I=JK(K) 

IF(I-K) 130.130,113 
113 DO 120 J=l,NOF!DER 

SAVE=ARRAV(K,J) J 
ARRAYC K, J Î = -AP!RAY< î . J I) 

120 ARRAYC I.JÎ=SA\'E }%%r 
130 CONTINUE 

RETURN llll 

SUBROUTINE RADPL ( îMA «XDIST,VI NT,N,RBP,ARI, LZ,RAD,RDI,UAM, 1584 

23C5) ,DL4( 5) .DL.5C 5» , X X  ([ 5 1 ) , Y Y ( S 1) , XA ( 1 5 ) , Y A{ 15 ) J588 
DIMENSION DL6(5) .DL7C 5Î oDLSCî» ) *589 

1 ,OL9C 5) ,DU10< 5) ,DI_H C 5) J 
DATA XL1/«X AN*.'D R ","(MM)',• •.* 

1 YUl/• I C X) « , • /iND*,» I([R®»*) •,* •/» 
2IGL/* I PR» ,«OFIL», ®E« L", •I NE ••• 0*/ 
DATA DLiy»SMOO* , «THED" ." IC X' ,' ) ' ,' */ 
DATA DL2/'INIT'.'IAL ° I C X ) " , • ' 

..•perc..;EN l|7 

lE 1600 
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DATA DL9/*10,O',*PERC*o«ENT ',«3ROB',* FOR*/ 1601 
DATA DUO/' 25,0* .'PERC »• ENT •.•PROS'.* FOR'/ 1602 
DATA DLl 1/•50.0* .*PERC , •ENT ',«PROS'. • FOR'/ 1603 
ÎZERO=0 1604 
DO I 1=1,IMA 1605 
IF < XD 1ST ( I > .l.T« O. J GO TO 1 1606 
IZERO=IZERO+1 1607 
X{ I ZERO)=X0IST( 1) 1608 
YC IZER01 = YINT< I 1609 

I CONTINUE 1610 
IZE=IMA 1611 
IMA=IZERO 1612 
NZERO=0 1613 
DO 4 IJ=1.N 1614 
IF (RBP(IJ,LZ%.LT.O.) GO TO 't- 1615 
NZERO=NZERO+l 1616 
XACN2ER0 )=RBP<: IJ.LZ ) 1617 
YAC NZEROï=ARI i; IJ ,UZI 1618 

4 CONTINUE 1619 
NHOLO=N 1620 
N=NZERO 1621 
IGL(5)=IGL.(5)-H_Z 1622 
CALL GRAPH <I MA .X«Y.O.2.7.00.9.00 .O .O,O.O.XL!,YL1 oIGL,DLAB) 1623 
CALL GRAPHS ( ][ M A • X . Y . 4 , 107 . Dl_ 1 ) 1624 
CALL GRAPHS (N.XA«YA,1,107,DL2) 1625 
IGL(5 ) = IGL(5) -LZ 16 26 
LZERO=0 1627 
DO 6 LDEX=1,KT 1628 
IF (RDI(LDEX) .LT.O.) GO TO 6 1629 
LZERO=L2ERO+l 1630 
XX(LZER01=RDI[LDEX) 1631 
YV(LZERO)=RAD[LDEX) 1632 

6 CONTINUE 1633 
KTHOLD=KT 1634 
KT=LZERO 1635 

a GO TO (9,10.11.15,16,16.16),\Z 1636 
9 CALL GRAPHS(KToXX.YY,2»111,DL3) 1537 

CALL GRAPHS(KT,XX,YY.O.107.0L4) 1638 
CALL GRAPHS(KT,XX.YY.O,107,DL8) 1639 
GO TO 12 1640 

10 CALL GRAPHS(KT»XX,YY,2,1 I 1.OL3) 1641 
CALL GRAPHS(KT,XX.YY.O.107.DL5) 1642 
CALL GRAPHS(Kr,XX.YY.O.107.DL8) 1643 
GO TO 12 1644 

11 CALL GRAPHS (KT , XX. YY . 2s. 11 1 .DL3) 1645 
CALL G«APHS(KT,XX.YY,0 « 107,DL6) 1646 
CALL GRAPHSCKT.XX.YY.O,107.DL8) 1647 
GO TO 12 1648 

15 CALL GRAPHS(KToXX.YY.2.111,DL3) 1649 
CALL GRAPHSCKT,XX.YY.0.107,DL7) 1650 
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CALL GRAPHS<KT.XX.YY.0. 107,OL8 ) 1651 
GO TO 12 1652 

16 CALL GRAPHS <KT» XX.YY.2.111 .DL3> 1653 
NN=NZ-4 1654 
GO TO (17.18,19),NN 1655 

17 CALL GRAPHS <KT,XX,YY,0•107,OL9> 1656 
GO TO 20 1657 

18 CALL GRAPHS (KT,XX.YY.O,107,DL10> 1658 
GO TO 20 1659 

19 CALL GRAPHS <KT« XX,YY,O•107,DLI 1> 1660 
20 CALL GRAPHS CKT,XX.YY,0,107,DL8) 1661 
12 KT=KTHOLD 1662 

IMA=IZE 1663 
N=NHOLD 1664 
DO 13 KPOS=l,KT 1665 

13 RAD<IPOS>=ABSCRAD(IPOS)) 1666 
RETURN 1667 
END 1668 
SUBROUTINE TEWP <NT,I MAT »RBP,ARI . RAOIST .RADINT,NL2T,DLAB,L3.KM,NL, 1669 

INH.LKODE.KPLOTl,KPLOT2,KLINE1 „KLINE2,DELA,DELI NT, lARTP) 1670 
DIMENSION FNUM(7) 1671 
DI MENS ION RBP€ I5.4),ARI(15,4) ,,RAO I ST (51,4.7) ,RAOINT(51 .4,7 ) .TLAT 1 ( 1672 

A 5D.K(15).RDI ST(51»,RA(6«51>,LA(6.51).Y1(15).Y2(51), 1673 
2TLAT2(51) ,TLAT3(51) ,TLAT4(51 ) ,TLAT5(51 ),TRAD1 (51 ) .TRA02(5l ),TRA03( 1674 
251 J,TRAD4(51) ,TRAD5(5l>•DLAB(5) ,I XL(5) ,IXR(5) 1675 
3,SUMLAT( 51 Î ,AVE4_AT( 511 , SUMRAC I: 51). AVERAD( 51 ) ,DELINT(51 ,4,7) 1676 
4,XTHOLD(15.4).YTHOLD(15,41,TLAT6(51).TRAD6<51),DELA(4),DELTR(6.51) 1677 
DATA FNUM/0.5,1.0.2.5*5=0.10,0,25.0,50.0/ 1678 
DATA IXL/' TLO',4*' '/, 1679 

31 IXR/" TRO',4** •/ 1680 
DO 6 NLINE=1.NLZT 1681 
KODEN=0 1682 
IF (qBP(l.NLINE).GE.OwO) GO 1O 3 1683 
K0DEN=K0DEN+1 1684 
IT2ERO=0 1685 
DO 2 NTSHIF=1,NT 1686 
IF (RBP(NTSHIF,NLINE).LT.0.0: GO TO 2 1687 
ITZERO=ITZERO+l 1688 
XTHOLO(IT2EROiNLINE»=RBP(NTSHIF,NLINE) 1689 
YTHOLOC ITZERO.NLINE)=ARI(NTSHIF.NLI NE) 1690 

2 CONTINUE 1691 
DO 4 NSUB1=1.ITZERO 1692 
RBP(NSU81oNLINE)=XTHO!_D(NSUB1. ,NLI NE) 1693 

4 ARKNSUBl ,NLINE Î=YTHOLD(NSUB:I ,NLI NE) 1694 
3 IF (NLINE.LT.NLZT) GO TO 6 1695 

IF (KODEN.EQ.O) GO TO 6 1696 
NT=ITZERO 1697 

6 CONTINUE 1698 
IMAT=IMAT-1 1699 
NT=NT-1 1700 
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NL=NU-l 1701 
IF (LKOOe.EQ.l) GO TO 97 »702 
RETURN 1703 

97 IF (NLZT.GE.2) GO TO 1 1704 
WRITE «6.1000Î 1705 

1000 FORMAT <//, 10 ><•'TEMPS » CANNOT BE CALCULATED : ONLY ONE LINE') 1706 
RETURN 1707 

1 DO 96 NPOLY=l,KM 1708 
NL=NL+1 1709 
WRITE t 6,1001 ) 1710 

1001 FORMAT (IHl) 1711 
WRITE (6,3000) NTtKODEN 1712 

3000 FORMAT CTlOt'TEMP CONTROL PAFAMETERS•,T15«•NT = *,I2.SX, 1713 
2'KODEN = ',12) 1714 
IF (KM,E0«2) GO TO 5 1715 
WRITE (6,100) FNUM(NL;I 1716 

100 FORMAT (IOX.'DKABEL MULTIPLE (--TEST POLYNOMIAL TEMPERATURE CALCULA 1717 
IT IONS FOR'/Tl5.F5.2, • PERCENT PROBABILITY OF EXCEEDING THE F-VALU 1718 
2E*) 1719 

5 WRITE (6,1002) 1720 
1002 FORMAT ( lOX,•CALCULAT HON OF L ATERAL AND RADIAL TEMPERATURESF 2-LIN 1721 

IE METHOD»®//) 1722 
WRITE (6,1003] 1723 

1003 FORMAT (lOX,'SYMBOL KEY") 1724 
WRITE (6,1 004 |i 1725 

10 04 FORMAT (5X."SYMBOL LINEl LINE2 EQl EQ2 INTEN. 1726 
lUSED") 1727 
WRITE (6,1005)1 1728 

1005 FORMAT </•, 5X „ • TLAT1 38115.84 3820.43 38175 33096 LAT 1729 
lERAL") 1730 
WRITE (6,1006 I 1731 

1 006 FORMAT </,5X,"TLAT2 " 3824,44 •• 26140 " 1732 
1•) 1733 
WRITE (6,1007) 1734 

& 007 FORMAT (/,5X."TLAT3 3820.43 " 33096 " " 1735 
1 : ) 1736 
WRITE (6,1008) 1737 

1 0 08 FORMAT ( /, 5X,TLAT 4 3815.84 3825.88 38175 33507 " 1738 
1 • ) 1739 
WRITE (6,1009) 1740 

1009 FORMAT (/,5X."TLAT5 3824,44 " 26140 " " 1741 
1») 1742 
WRITE (6,4000) 1743 

4000 FORMAT (/,5X,'TLAT6 3820.43 " 33096 " " 1744 
I» > 1745 
WRITE (6,1010) 1746 

1010 FORMAT (/,5X.'TRADl THRU TRAD6 SIMILAR EXCEPT RADIAL INTEN. USED», 1747 
1/////J 1748 
WRITE (6,5000) (DELA(I),1=1,NLZT) 1749 

5000 FORMAT (T10,»OELA( 1 )= • ,F5.2, 10X, •DELA(2)= »,F5.2 , 1OX , •DELA(3)= ». 1750 
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ÎF5.2. lOX.» DEl.A(A)= «,F5.2) 1751 
IF(1ARTP«E0,9) WRITECe,500l) 1752 

5001 FORMAT(///«T10.'*****BANFIELD AN) HUBER (1973) GA VALUES'»///) 1753 
WRITE (6<1011) NT 1754 

10 11 FORMAT (40X.«LATERAL TEMPERATURES FOR',I4*2X,'EXPERIMENTAL LATERAL 1755 
1 POSITIONS IN EMISS. SOURCE«,//.T20X TLATl(X) TLAT2(X) 1756 
2 TLAT3<X) TLATA(X) TLAT5(X) TLAT6(X)•.//) 1757 
DO 10 I=%«NT 1758 
TLATl ( I )=3 173. /ALOGl OC 1 « 1 60 5=t= ( ARI < I .2)/ARI C 1,1))) 1 759 
IF( IARTP»EQ.9] TLATl { !I)-TLAT] (I )/( 1.0 + 6.218E-5*TLAT1( I ) ) 1760 
IF <NLZT.,EQ.2) GO TO 10 1761 
TL AT2( I ) ;=7518«r/ALOGl O it 33 .937X= l ARI ( 1.3) /AR 1(1,1))) 1 762 
IF( IARTP.EQ.9 J TLA T2 ( ï) =TLAT;> ( 1 ) / ( 1 . 0+2. 5 59E-5* TL AT2 ( I) ) 1763 
TLAT3( I )=434S ,,/ALOGlO C 29. 244" ( ARI ( 1,3) / AR 1(1,2))) 1 764 
IF( IARTP.E0.9 ] TLAT3( I )=TLAT:) CI ) / ( 1.0-1 .0 31 E-6»TLAT3( I ) ) 1 765 
IF (NLZT.EQ.31i GO TO 10 1766 
TLAT4( I ) =29 16 ,,/ALOGlO t 1 .676*': ARK I ,4)/ARI< 1,1))) 1767 
IF( IARTP.EQ.9 ]i TLAT4( I )=TLAT'V( I )/( 1 .0+6.1 44E-5»TLAT4( I ) ) 1768 
TLAT5 ( I )=-460(: ./ALOG10(0o049'V»( AR ICI ,4)/ARI (1,3))) 1769 
IF( IARTP.EQ.9 Jl TLAT5( I)=TLAT!5( I )/ ( 1 .0+2.906E-6*TLAT5( I ) ) 1770 
TLAT6( I )=-256,,9/ALOG10( 1«444^(ARI ( I ,4) / ARK 1,2))) 1771 
IFfi IARTP.EQ.9 il TLAT6( I )=TLATr>( I )/( 1 .0+6.894E-5*TLAT6( I ) ) 1772 

1012 FORMAT ( 1 5X , F (3 . 3 .6 ( 4X ,F8 <. 1 ) ) 1773 
10 WRITE (6,10121 RBP( I , l ) ,TLAT 1 ( I ) ,TLAT2( I ) .TLAT3 ( I 1) ,TLAT4( I ) ,TLAT5( 1774 

1I),TLAT6(I) 1775 
WRITE (6,1013) IMAT 1776 

3013 FORMAT (//////////,40X,'RADIAL TEMPERATURES FOR',%4«2X,'RADIAL POS 1777 
IITIONS IN THE EMISSION SOURCE•,//,T20,•R TRAOH(R) TRA02(R) 1778 
2 TRAD3(R) TRAD4(P) TRAD5(R) T RAD6 ([ R ) ' ,//» 1779 
DO 20 J=:l , IMAT 1780 
K=<IMAT-J)+2 1781 
TRADl ( JJ =3173 ./ALOGl O { 1 . 1 605 te ( RAD I NT( K. 2, NPOLY ) /R ADI NT ( K , 1 , NPOLY ) ) 1 782 
1) 1783 
IF(IARTP«EQ.9) TRAD 1 ( Jt ) =TRAO 1 ( J ) / ( l .0 + 6 . 2 1 8E-5 *TR ADI ( J ) ) 1784 
DELTR(19J)=(TRAD1(J)/(1.439*5079.))»(DELA(l)+DELA[2%+DELlNT(K,1,NP 1785 
10LY)+OELINT(K,2,NPOLY)) 1786 
IF (NLZT.EQ.2) GO TO 20 1787 
TRAD2(J)=75ie./ALOGlO(33o937»(RADINT(K,3,NPOLY)/RADINT(K,1,NPOLY)) 1788 
1) 1789 
IF(IARTPoEQ.9) TRAD2(J)=TRAO2(J)/(1.0+2.559E-5»TRAD2(J)) 1790 
OELTR«2.J) = (T RAD2(J)/(1.439*12035. ) )*(DELAC 1)+DELA(3)+DELINT( K,1 ,N 1791 
lPOLY)+OELINT(Kb3,NPOLY)) 1792 
T«AD3( J)-"4345./ALOGÎO(2Ç).244»(RADlNT( K,3,NP0LY)/RA0INT(K,2,NP0LY) ) 1793 
1) 1794 
IF( IARTP.EQ.9) TRA03(J)=TRAD3(J)/( 1 .0-1.031E-6*TRA03(J) ) 1795 
DELT3(3,J)=(TRAD3<J)/<1«439*6956.))*(DELA(2)+DELA(3)+OELINT(K,2,NP 1796 

10LYD+DELINT(K.3,NP0LY)) 1797 
IF (NLZT.EQ.3) GO TO 20 1798 
TRAD4(J)=2916./ALOGIO(1«676*(RADINT(K,4,NPOLY)/RAOINT(K,1,NPOLY))) 1799 
IF( ÏARTP.E0.9 ) TRAD4 ( J)=TRAD«. ( J )/( 1 .0 + 6.1 44E-5»TRAD4( J ) ) 1800 
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DELTRC 4, J )= (TF!AD4( J ) / It I »4 39*5'&6 8. ))*(DELACll+DELA(4)+DEl_INTtK.l,NP I 80 I 
lOLY)+OeL INTCK, 4,NPOLY) ) 1802 
TRA05 ( J) =-46C« ./ALOGl 0 ( 0 « 04 * f RA D I NT ( K , 4 , NPDL Y ) / R AD I NT (K, 3,NPOLY) 1 803 

1 ) > 1804 
IF( lARTP.EQeQ ] TRAD5 ( J ) = TR AOIS ( J )/• ( I .0 +2 . 906E-6 + TR AD5 ( J > ) 1805 
DELTR{5.J) = (TRAD5(J)/ [1.439*7367. ) )»COELA« 3)+DELA(4)+OELINT<K,3,NP 1806 
10LY)+DELINT(Kw4.NPOLY)) 1807 
TRAD6< J)=-256 »9/ALOG10( 1 »444"< RAO I NT(K,4,NPOLY)/RADINT{K,2.NPOLY ) ) 180 8 

I) 1809 
IFC lARTP .EQ.9 :> TRAD6( J )=TRAD(i ( J )/ ( 1 .0+ 6. 894E-6* TRAD6( J ) ) 1810 
DELTRC 6.J) = (TRAD6{J)/(1 .439*411.) )*{DELAC 2)+DELA(4)+OELI NT(K,2,NPO 1811 

lLY)+DELINTCK,4,NPOLY)) 1912 
1014 FORMAT ( I5X.F8•3,6<4X ,F8» 1) ) 1813 

20 WRITE (6,1014 1 RAD I ST (K , 1 ,.NPOLY ) , TRADl ( J ) ,TRAD2 < J ]i , TRAD3< J ) ,TRAD4 f 1814 
IJJ.TRAD5(J),TRAD6(J) 1815 
WRITE (6.2999) 1816 

2999 FORMAT (/////,T10. 'RADIAL POS',T26.'DELTA TRAD 1• oT43, •DELTA TRAD2 • 1817 
1.T60»«DELTA TRA03'.T76.•DELTA TRAD4•,T94,•DELTA TRADS'.Till,'DELTA 1818 
1 TRAD6') 1819 
DO 29 I=1.IMAT 1820 
J=<IMAT-I)+2 1821 

3001 FORMAT (T8,El1.4.T26»5(Ell.4,6X),E11 «4) 1822 
29 WRITE (6,3001) RAD I ST(J,1,NPQLY),(DELTR(K,I ).K=1,6) 1823 

DO 30 L=1,1MAT 1824 
Kl<=( IMAT-L)+2 1825 

30 ROIST(L)=RAOISTCKK,1,NPOLY) 1826 
DO 40 M=1,NT 1827 

40 XtM)=RBPCM,1) 1828 
NN=IMAT 1829 
IF (KPLOTl«E0.1) GO TO 65 1830 
IF (NLZT.E0.2) GO TO 15 1831 
IF <NC£T.EQ.3) GO TO 21 1832 
IF (NL?.T»EQo4> GO TO 21 1833 
RETURN 1834 

15 CALL GRAPH {NT,X,TLAT 1 .0,2,7.0,9. , 0 , 0,0.2500., •X AND R (MM) ;• . •T(X 1835 
1) AND TlR);•,•TEMPERATURE PROFILE ; • ,DLAB) 1836 
CALL GRAPHS (NT,X.TLATl.4.107.'LATERAL TEMPS.:') 1837 
CALL GRAPHS (NN.RDIST.TRADl,1,111,'RADIAL TEMPS.:') 1838 
GO TO 12 1839 

21 DO 22 N=1,NT 1840 
LA(I.N)=TLAT1<N) 1841 
IF (NL2T.EQ.2) GO TO 22 1842 
LA(2.N)=TLAT2(N) 1843 
LA(3.N)=TLAT3(N) 1844 
IF CNLZT.EQ»3) GO TO 22 1845 
LA(4,N)=TLAT4(N) 1846 
LA(5,N)=TLAT5(N) 1847 
LA(6»N)=TLAT6(N) 1848 

22 CONTINUE 1849 
DO 23 11 = 1, IMA T 1850 
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RA( 1 » I I )=TRAD1 (II) 
IF (Nl_ZT.E0.2) GO TO 23 
RA( 2. II )=TRAD2f I I) 
RA(3. I I )=TRAD3( I I) 
IF (NLZT.EQ.3) GO TO 23 
R A ( 4 .  I  I > = T H A D 4  C 1 1  »  
RA{5.I I) = TRAD5(III 
RA(6. II )=TRADe(I I) 

23 CONTINUE 
IF (NLZT.E0.4J GO TO 50 
DO 35 JJ=a.3 
IF CJJ.CToKCINE1) GO TO 34 
IF (JJ.EQoKLINE2) GO TO 34 
DO 24 KK=l.NT 

24 Y1 (KK;>=I_A« JJ»KK> 
DO 25 LL=1»IMAT 

25 Y2(UU )=RA( J 
I XL ( 1 ) =I XL ( 1) { I 
IXR( 1 ) = I XR( IX 1 
CALL GRAPH (NT.X.Yl,0.2,7.0,^«,0,0,0,2500. 
IND TtR)TEMPERATURE PROFILE:',DLAB) 
CALL GRAPHS (NT«X«r1.4.I 07,I XL) 
CALL GRAPHS (NN,RDI ST,Y2o1,114•IXR) 
GO TO 35 

34 IXLCl ) = IXL( 1)H 
IXRd ) = I XR( 1 ) H 

35 CONTINUE 
IXLd ) = IXL( 1 ) -3 
IXRd )=IXR( 1) 3 
GO TO 12 

50 DO 60 JK=l,6 
IF (JK.LT.KLINEl) GO TO 59 
IF ( JK.EQ.KLIIME2 ) GO TO 59 
DO 51 KL=1,NT 

51 Y1(KL)=LA(JK,KL) 
DO 52 LM=1,IMAT 

52 Y2(LM»=RA(JK, LM) 
IXL<I »=IXL( 1) +1 
IXR(IÎ=IXR(1)+1 _ _ 
CALL GRAPH (NT,X »Y 1,0 » 2 »7,0,9 , ,0,0 » 0•2500•»•K 
IND T(RTEMPERATURE PROFILE;',DLAB) 
CALL GRAPHS (NT•X,Y I,4, 107, I XL> 
CALL GRAPHS ( NN • RD I ST , Y 2 , 1 , 1 I. 1 , IX R > 
GO TO 60 

59 IXL€I)=IXL(11+1 
IXR(1J=IXR«1>+1 

60 CONTINUE 
IXL«I)=IXL(IÎ -6  
IXR<I)=IXR«l)-6 

12 IF (L3.EO.I) GO TO 65 

X AND R (MM);•,'T(X) 

AND R (MM);•,•T(X) 

1851 
1852 
1853 
1854 
1 855 
1856 
1857 
1858 
1859 
1 860 
1861 
1862 
1 863 
1864 
1 865 
1 866 
1867 
1868 
1869 
1870 
1871 
1872 
1873 
1 874 
1875 
1 876 
1877 
1878 
1 879 
1 880 
1881 
1882 
1883 
1884 
1885 
1886 
1 887 
1888 
1889 
1 890 
1891 
1892 
1893 
1894 
1895 
1896 
1897 
1 898 
1899 
1900 

h-' 
UO 
vo 
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IF (NPOLYoLT.KM) GO TO 96 1 901 
RETURN 1902 

65 DO 75 IJK=l.NT 1903 
SUMLAT ( UK) =0 . 0 1904 
SUMLAT (UK) =SUMLATC I J  K)  -O-TLAT 1  CI JK.  )  1905 
IF <NLZT.EQ.2) GO TO 66 1 906 
SUMLAT ( UK) =SUMLAT< I JK) +TLAT2 [ I JK )+TLAT3( UK) 1 907 
IF <NLZT.EQ.3) GO TO 67 1 908 
SUMLAT ( I JK)=SUMLAT C UK) 4^TLAT^ [ UK)+TLAT5f IJK) + TLAT6(UK) 1909 
AVELAT( UK)=SUMLAT< UK) 1 91 0 
GO TO 75 19 11 

66 AVELAT( UK)=SUMLAT( I JK) 1912 
GO TO 75 1913 

67 AVELAT( UK)=SUMLAT( U K ) / 3 . 1914 
75 CONTINUE 1915 

DO 85 LMN=1 .I MAT 1916 
SUMRAD<LMNi)=0 „0 1917 
SUMRAD (LMN) =SUMRAD<LMK) +TRADI. (LMN ) 1918 
IF <NLZT.EQ.2J GO TO 76 1919 
SUMRAD(LMN)=SUMRAD(LMN)+TRAD2(LMN)+TRAD3CLMN) 1920 
IF (NLZT.EQ.3] GO TO 77 1 921 
SUMRAOfLMN)=SUMRAOCLMN) +TRAD'KLM\ ) «-TRAD5(LMN) +TRAD6(LMN) 1922 
AVERAD(LMN)=SUMRAD(LMN)/6. 1 923 
GO TO 85 1924 

76 AVERAO(LMN)=SUMRAD(LMN) 1925 
GO TO 85 1926 

77 AVERADfLMN)=SUMRAOtLMN)/3. 1927 
65 CONTINUE 1928 

WRITE (6,2000 :l 1929 
2000 FQRMATCIOX, «DltSTANCE AVE. RADIAL T») 1930 

DO 90 NNN=1.I MAT 1931 
2001 FORMAT CTlO.Ell 1 ,4, BX.EI I o4) 1932 

90 WRITE (6,2001 I RDIST ( NNN) , AVIERADC NNN) 1933 
WRITE (6,2002) 1934 

2002 FORMAT (//////////,1 OX,'DISTANCE AVE. LATERAL T • ) 1935 
DO 95 MMM=1,NT 1936 

2003 FORMAT (TIO,E11.4,8X,£11«4) 1937 
95 WRITE «6,2003) X(MMM),AVELATtMMM) 1938 

IF <KPLOT2.EQ.1) GO TO 96 1939 
CALL GRAPH (NT,X•AVELAT,0,2,7o0.9..0,0.0,2500.,•X AND R (MM);',' AV 1940 
IE. LINE PAIR TEMP»• t •AVE, LP TEM^ PROF ILE•,DLAB1 1 941 
CALL GRAPHS (NT,X,AVELAT,4.107,'AVE. LATERAL TEMPS.?') 1942 
CALL GRAPHS ([MAT,RDIST.AVERAD.1,111.'AVE. RADIAL TEMPS. ; • » 1 943 

95 CONTINUE 1944 
RETURN 1945 
END 1946 
SUBROUTINE SLOPET (NT,I MAT,R8P.AQI ,RADI ST,RAD I NT,NLZT,DLAB,WAVE, KM 1947 

I ,NL,NH,LKODE,KPLOT3,KPNEDl,KPNE02,DELA.DELINT,lARTP) 1 948 
C LEAST SQUARES SLDPE METHOD OF TEMPERATURE CALCULAT ION 1949 

DIMENSION FNUM(7) 1 950 
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sHnïîiSissiïïïH^îiiHsrr-îiîiîKiriîœ ji 

DATA FNUM/0.5,0.2.5,5.0,10.0.25.0.50.0/ 
DATA TS/0.0,12.706.4.303,3.182.2.776/ 1^58 
IF <LKOOE.EQ.2) GO TO 30 
IF(LKOOE.EQ.3) GO TO 1999 

^TA^EQ/381 75o , 33096* ,26140.,3350 7./.GA/7.49.6.A6 2.0.2212i>4,480/ îlff 
IF< IARTP.NE.9) GO TO 35 1964 

9999 FORMAT (///,T10. BAINFIELD AND HUBER GA VALUES USED*****' ) 
GA(1)=10.25 \%%% 
GA(2)=5.619 

itïva-.iir ill 
GO TO 35 IgyV 

30 CONTINUE Jzli 
E0( 1) =1 16634. layi. 
EQ{ 2) = lia893. 1qyf 
EQ(3)=117199. :X4= 
E0(4)=117118. _ 
GO TO (100. 101 .102,103, 104, 105),I ARTP 
READ <5,2000) (GA(JJJ).JJJ=1,NLZT) 

2000 FORMAT (4F10.0) 
GO TO 35 , ÎAon 

19 99 REAO(5»2000) (EQdlI ) ,111=1 ,NLZT ) 
READ( 5.2000) <GA(JJJ) ,JJJ = 1 ,NLZT) 
GO TO 35 \%%% 

100 CONTINUE jQof 
GACII) = 2.67 tggs 
GAC2)=36.65 {2°? 
GA(3Î=13.25 îoly 
GA(4Î=20.64 \qqL 
GO TO 35 ÎX|| 

101 CONTINUE foXo 
GA(1)=2.25 Îqq7 
GA(2)=36.43 taap 
GA«35=14.7 Îqq3 
GAt4)=23.07 Iggf 
GO TO 35 logs 

102 CONTINUE 1QQ6 
GA(1)=2.55 1qgy 
G A(2)=36 « 0 1998 
GA(3)=14.0 IQQO 

gâ'îm-' 

M 
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103 CONTINUE 
GA(1)=3.96 
GA(2)=45.0 
GA( 3) = 1 a.0 
GA( 4) =27.0 
GO TO 35 

104 CONTINUE 
GA( 1 ) = 2.28 
GA( 2) =32 .0 
GA(3)=ll.5 
GA(4)=18.9 
GO TO 35 

105 CONTINUE 
GA{1)=2.37 
GA< 2)=36.O 
GAt 3) = 14.0 
GA(4)=21.3 

35 IF C NL ZT.GE.3 
WRITE (6,99) 

99 FORMAT (15X,' 
1 TEMPo•) 
RETURN 

1 DO 25 NPOLY=l 
NL=NL+1 
WRITE (6.1005 

1005 FORMAT (///// 
IF HKM.EQ.l) 
WRITE (6.1006 

1006 FORMAT (lOX," 
ITIONS FOR'/Tl 
2E • ) 

15 WRITE (6.1000 
1000 FORMAT (5X,*C 

IMETHOD•) 
DO 2 II=1«NLZ 
DO 2 IJ=1.NT 

2 YCALCN<IJolIÎ 
CALL. LSQ (NT, 
ICALYLA.YUA,YL 
WRITE (6.1001 

1001 FORMAT ( • 
1 Y~INTERCEPT 
DO 3 1=1.NT 

1002 FORMAT (T2.E1 
3 WRITE (6.1002 

IF (KPNEDl.NE 
WRITE (7« 70 00 

7000 FORMAT (lOX.' 
DO 29 12 = 1. NT 

7001 FORMAT (2F10. 

) GO TO 1 

INSUFFICIENT NUMBER OF DATA POINTS TO CALCULATE SLOPE 

. KM 

) 
} 
GO TO 15 
) FNUM(NL) 
DKABEL MULTIPLE F-TEST POLYNOMIAL TEMPERATURE CALCULA 
5.F5.2.' PERCENT PROBABILITY OF EXCEEDING THE F-VALU 

ALCULATICN OF TEMPERATURE BY THE LEAST-SOUARES SLOPE 

T 

= AR I ( I J , I I ) 
YCALCN.NLZT.TS,G A.EO«Y INLA.TLA.SLOPEL * ERRORL,WAVE. 
ADIFÎ 

' X ir ( X ) SLOPE ( X ) 95 CL 
• ) 

1.4.1X,Ello4,2);,E11.4,2(4X,E11.4)) 
) RBP( I , 1> .TLA< t ».SLOPELt I ) .ERRORLI I ).Y INLA(I ) 
.1) GO TO 28 
) DLAB 
LATERAL SLOPE IE MP. DATA FOR' .SX.5A4.5X,'RUN' ) 

3 ) 

200 1  
2 0 0 2  
2003 
2004 
2005 
2006 
2007 
2 0 0 8  
2009 
2 0 1 0  
2 0 1  1  
2012 
2013 
2014 
2015 
2 0 1  6  
2017 
20 18 
2019 
20 20 
2021 
2022 
2023 
2024 
2025 
2026 
2027 
2028 
20 29 
2030 
2031 
20 32 
2033 
2034 
2035 
2036 
2037 
2038 
2039 
2040 
2041 
2042 
2043 
2044 
2045 
2046 
2047 
2048 
2049 
20 50 
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29 WRITE (7,7001 ) TLA ( I 2 1» , RBP( I £ , 1 ) 
WRITE (6.7002) DLAB 

7002 FORMAT (///.TIO.«LATERAL SLOPE TEMP DATA HAS BEEN PUNCHED FOR USE 
1 IN THE ELECTRON' «/«T10, 'DENS I TV PROGRAM FOR THE DATA RUN' ,5X.5A4) 

28 DO 4 KK=1»NLZT 
DO 4 KL=1 « I MAT 
K=(IMAT-KL)+2 

A YCALCN(KL,KK)=:RADINT( K, KK.NPOLY ) 
CALL USQ (I MAT • YCALCN.NLZT, T£. , G A, E O , RA Y IN , RAT , R SLOPE , RERROR .WAVE , 
ICAL YRA.YRA. YR^.DIF) 
DO 40 I=1,NLZT 
DO 40 J=1 oI MAT 
K = l IMAT-JÎI+2 
D(J,I)=DELINT(K,I,NPOLY) 
SUMEQ=0«0 
SUME02=0.0 
DO 39 L=loNLZT 
SUMEQ=SUMEQ+EO(L) 
SUMEQ2=SUMEQ2H(EQ(L)*EQCL)) 
DENOMT=ABS((NLZT#SUMEQ2)-<SUMEQ*SUMEQ)) 
DO 38 M=1,NLZT 
COEFTt M1=ABS< < NLZT$EOl[M ) J-SUMEQ) 
DO 37 N=1,1 MAT 
XMULT=RAT(N)/(1,439*DENOMT) 
TERM=0.0 
DO 36 M=1 , NLZl 
TERM=TERM+CCOEFT(M)*(DELA(M)hD(N,M))) 
DELTRS(N)=XMULT*TERM 
WRITE (6,i003;i 

40 

39 

38 

36 
37 

I 0 03 

1 004 
5 

8000 

8001  
34 

8002  

33 
3000 

3001 

FORMAT (• 
1 Y-ENTERCEPT" 
DO 5 J=1,IMAT 
K E M A T - J ) + 2  
FORMAT (T2,E11 
WRITE (6,1004) 

1(J),DELTRS(J) 
IF (KPNED2.hE , 
WRITE (7.8000 > 

,6X, 
R 

' D E L  TA 
r(R) 

T(R) IN 
SLOPE(R) 

PERCENT») 
95 CL 

.4,1X,E11 ..4,2X ,E1 1. 4,2(4X,E11 .4 ) , 12X,El 1 .4) 
RADIST (Kl , 1 , NPOLY) ,RAT<J) ,RSL3PE(J]i . RERROR ( J ) , R AY I N 

TO 3 3  I ) GO 
DLAB 

FORMAT ( 1 OX,'RADIAL SLOPE TEMP. DATA FOR• ,5X,5A4.5X,•RUN•) 
DO 34 J2=l.IMAT 
K2=(IMAT-J2)+2 
FORMAT (2F10.3.15X. 'DEGREE' .I 5,5A 4) 
WRITE (7.8001» RAT(J2Î,RADIST(K2,1,NPOLY).NL.DLAB 
WRITE (6«8002) DLAB 
FORMAT (•//',Tl0.*RADIAL SLOPE TEMP» DATA HAS BEEN PUNCHED FOR USE 
UN THE ELECTRON'./.TIO."DENSITY PROGRAM FOR THE DATA RUN'.5X.5A4) 
WRITE (6.3000) 
FORMAT (/////) 
WRITE (6.3001) 
FORMAT (T25,'LATERAL INTENSITY DATA, Y=LOG(GA/WAVE* I(X) )' .///) 

2051 
2052 
20 53 
2054 
2055 
2056 
2057 
2058 
2059 
2060 
2061 
2062 
2063 
2064 
2065 
2066 
2067 
2063 
2069 
2070 
2071 
2072 
2073 
2074 
2075 
2076 
2077 
2078 
2079 
2080 
2081 
2082 
2083 
2084 
2085 
2086 
2087 
2088 
2089 
2090 
2091 
2092 
2093 
2094 
2095 
2096 
2097 
2098 
2099 
2 1 0 0  

LO 
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DO 6 Nl = l ,N,T 2101 
WRITE (6 « 30 02) RBP(N1 .1 ) dTLAtM I) 2102 

3002 FORMAT(/Tl5»*LATERAL DISTANCE = • .EI I.4 , 2X, •T( X) = « ,E1 1.4) 2103 
WRITE (6,3003) 2104 

3003 FORMAT Î/T3 •»'WAVELENGTH CALC Y EXPT Y DEL Y 2105 
lEXC. POT«',/) 2106 
DO 6 N2=1,NLZT 2107 

3004 FORMAT CT2,5(E1 1 .4,2X ) ) 2108 
6 WRITE (6.3004) W A V E(N2).CALYLA(N1.N2Î,YLA(N1.N2> . Y L A DIF(N1,N2),EQ( 2109 
1N2) 2110 
WRITE (6,3005) 2111 

3005 FORMAT (//////////,T2S,'RADIAL INTENSITY DATA, Y=LOG(GA/WAVE*I(R)) 2112 
1•.///> 2113 
DO 7 N3=1 . I MAT 2114 
KKK=(IMAT-N3)+2 2115 
WRITE (6,3006) RADI ST<KKK, 1 ,NPOLY) ,RAT( N3) 2116 

3006 FORMAT (/T15.'RADIAL DISTANCE = ' .El1.4.2X, 'T(R) = ',El 1 .4) 2117 
WRITE (6.3007) 2118 

3007 FORMAT (/T3WAVELENGTH CALC Y EXPT Y DEL Y 2119 
lEXC. POT.»,/) 2120 
DO 7 N4=1,NLZT 2121 

3008 FORMAT CT2,5(El I.4,2X ) ) 2122 
7 WRITE (6,3008) WAVE(N4),CALYPA(N3,N4),YRA(N3,N4),YRAD IF(N3.N4) ,EQ( 2123 
1N4) 2124 
IF (KPLOT3«EQ« 1 ) GO TO 25 2125 
DO 10 M=1,NT 2126 

10 X1<M}=RBP(M,1) 2127 
DO 20 N=1,IMAT 2126 
K2=(IMAT-N)+2 2129 

20 X2(N)=RADIST(K2.1,NPOLY) 2130 
CALL GRAPH (NT,X1•TLA ,0,2•7.0 «9.,0,C,0.2500.,•X AND R (MM) ; •, • SLOP 2131 
IE T(X) AND T(R) «SLOPE TEMP,, PROF I LE ; • , DLAB ) 2132 
CALL GRAPHS (NT,XI,TLA.4.10 7."LATERAL SLOPE TEMP.;») 2133 
CALL GRAPHS ( I  MAT, X2.PAT, 1,11 31  «'RADIAL SLOPE TEMP.;») 2134 

25 CONTINUE 2135 
RETURN 2136 
END 2137 
SUBROUTINE LSQ (INDEX,YCALCN.NLZT,TS.GA.EO.YIN.TEMP,SLOPE.ERRORM, 2138 

1WAVE,CALCY,Y,YD IF) 2139 
DIMENSION YCALCN(51,4),TS(5),GA(4).EQ(4).YIN(51).TEMP(51)oSLOPE(5 1 2140 

1),ERRORM(51).SUMX(51)„SUMY(51),SJMXX(51I.SUMXY(51),WAVE(4),DENOM(5 2141 
21 ) , SSEd 51 > , SSEXI 51 ) ,XBARII51 ) , DIFY ( 4 ) ,D IFX( 4 ) 2142 
3, C ALC Y (51,4). Y (51,4). YD IF ( 5 1 , 4 ) 2 143 
8 DO 50 1=1,INDEX 2144 

SUMXdI)=0.0 2145 
SUMY( I )=0 .0 2146 
SUMXX(I)=0®0 2147 
SUMXY(I)=0»0 2148 
DO 2 J=1,NLZT 2149 
SUMX(I)=SUMX(I)+EQ(J) 2150 
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SUMYtI>=SUMY{I)+AUQG10(GA(J)%(WAVE(J)*YCALCNCI•J))) 2151 
SUMXX<I)=SUMXXtI)+(EQ(J)*EQ(J)) 2152 

2 SUMXY< î)=SUMXY(I) + (EQ(J)*ALOG10(GA(J)/(WAVE{J)•YCALCNC I,J) })) 2153 
D=NLZT 2154 
OGNOM{ Ï }=(D*SUMXX(  I ) )-C SUMX( I )+SJ MX( I) J 2155 
SLOPE(!)=((D*SUMXY( I ) )-(SUMX< I »•SUMYC I) ) )/DENOMCI ) 2156 
YlNCI)= CfSUMXXCI)*SUMY(1Î)-tSUMXY(I)*SUMX(IÏ))/DENOM<I) 2157 
SSE(I)=0.0 2158 
SSEXC I )=0 .0 21 59 
XBARCI)=SUMXCI)/D 2160 
DO 3  L=1»NLZT 2161 
CALCYC I,L)=SLOPECI )*EQ(L)+YINC I ) 2162 
YC I.L J =AUOGIO C GACL)/C WAVECL)*YCALCNC I,L))) 2163 
YDIF(I,l_) = YCI.L>-CALCY<IoL) 2164 
DIFYCL»=YDIFCI»L)*YDIF(I.L) 2165 
SSEC I)=SSEC E)+OIFYCL) 2166 
XOIF=EQCL>-KBARCI) 2167 
DIFXCL)=XDIF*XDIF 2168 

3 SSEXC I Î = SSEXC I Î+DIFXC L) 2169 
SSEXCIÎ=SQRTCSSEXCI>) 2170 
S=SQRT(SSEC I)/C D-2.) ) 2171 
ERRORM CI ) = C TSC NLZT)*S)/SSEXCI) 2172 
TEMPCI >=1 ./«l•60013*SLOPE(I ) ) 2173 ^ 

50 CONTINUE 2174 
RETURN 2175 Ui 
END 2176 
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APPENDIX B: 

ABEL INVERSION CALCULATIONS 

General Considerations and the 

Abel Integral Equation 

We consider a cross-section of the plasma which is 

circularly symmetric with respect to the Z-axls as illustrated 

in Figure B-1. The experimentally measured lateral intensity, 

I(X)j at displacement X, Is given by the Integral of the radial 

intensity distribution function J(R), which is collected in the 

monochromator viewing field over the depth of the source from a 

horizontal section parallel to the Y-axis,^ 

^Y(X) 

I(X) = 2 J(R) dY (Bl) 

0 

The factor of 2 in Equation Bl arises from the fact that the 

integral limits apply to only half of the source and the radial 

distribution function has been assumed to be symmetric about 

the X-axis. When the transformation of variables defined by 

It is important to realize that Equation Bl expresses the 
geometrical relationship between the spatially resolved 
emission, which is projected from unit volume of a horizontal 
section of the source parallel to the Y-axis, e., J(R) and, 
the space integrated intensity radiated over the depth of 
that section. I.e., I(X). 
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Figure B-1. Spatial relationship between the measured lateral 
intensity, I(X), at displacement X; and, the 
radial intensity, J(R), at radius R from the 
center of a circularly symmetric source employing 
side-on observation. Rg is the boundary radius 
at which no lateral intensity is detected 
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2 2 ? R  =  

Y  =  ( R ^  - (B2) 

dY = R(R^ - dR 

is performed, Equation B1 becomes 

I ( X )  =  2  
r Rg 

R J(R) (R^ - dR (B3) 

X 

where, R is the radial distance from the center of the source. 

Eg is the radius at the outer boundary, X is the lateral 

displacement from the center (Figure B-1) and, the change in 

limits is given by 

R = X at Y = 0 

and, (B4) 

R  =  a t  y  =  Y ( X )  
D 

Equation B3 is the Abel integral equation and is a 

special case of the Volterra equation of the first kind (129). 

To solve for the unknown J(R) function. Equation B3 may be 

analytically inverted to yield (36,nO,129). 

provided J(R)=0 for all R>Rg. I'(X) is the first derivative of 

the radiance function with respect to the lateral coordinate X, 

'  I ' ( X )  =  d ( I ( X ) ) / d X  
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Various methods for solving Equation B5 have been devised; 

these methods can be broken into three general categories (49, 

50): (1) graphical, (2) numerical, and (3) data approximation 

schemes. The latter two approaches utilize curve fitting or 

other mathematical approximations. A number of graphical or 

semigraphical methods for solving Equation B3 or B5 have 

appeared in the literature (52,130-132). Priederish (52) made 

the assumption that the ratio, I(X)/X, was constant in a given 

Increment interval to simplify evaluation of the Abel integral 

over that interval; a graphical method was employed to obtain 

the I(X)/X values. Hermann (132a) transformed the variables 

in Equation B5 to obtain an integral which he evaluated by 

graphical techniques. Despite some successful applications of 

these graphical methods, all are time consuming and have been 

ouLmoded by faster computer methods. We shall focus our 

attention on these rapid analysis methods in the following 

sections. 

Numerical Methods 

In 1935, Hormann (132a) and more recently in 1950, 

Gooderum and Wood (131) suggested methods for numerical inte

gration of Equation B5. Both methods could be applied when 

the spectrometric measurement of lateral intensities was 

accomplished with a low aperture optical transfer system 

similar to that described in this work. Nestor and Olsen (49) 
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simplified these procedures to yield a significantly improved 

method, especially when a large number of observed functions 

were to be inverted. This method was also compatible with 

computer analysis. 

For the Nestor and Olsen method, the numerical integration 

of Equation B5 was performed by dividing the X-axis into N 

zones of equal width a, as shown in Figure B-2; the n-th zone 

was defined by the relationships, and X^ = na. With 

the transformation 

V = and u = X^ (B6) 

Equation B5 became 
r2 

J(R(v)) = - (I/ t t) I'(u )  ( u  - v)-^/^ du (B7) 

^  v  

where, the following relationships were employed 

dX = (1/2) u"^/^ du 

(X^ - = (u - v)^^^ (B8) 

d(I(u))/du = (d(I(X))/dX)(d(g(u))/du) 

anu. 

g(u) = X = u^^^ 

I'(X) = 2 u^/^ I'(u) (B9) 

When the integral in Equation B? was divided into sub-

integrals for each zone and I(u) was assumed to be a linear 

function of u in each zone, the following form was obtained 
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Figure B-2. Two-dimensional representation of a circularly 
symmetric source divided into N zones of equal 
width, a 
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for any zone, k 

N_1 r (a(n+l)) 

J, = J(ak) = (- I /TT ) I I'(u) l  (u -i " -^(an)^ (BIO) 

(ak)^)~^^^ du 

where, the Integral limits and the v variable were replaced 

by the appropriate zone constants. I^(u) was approximated 

within each zone by 

r(u)  = (b id  
a ((n+1) - n ) 

Substitution of Equation Bll into BIO and subsequent inte

gration yielded 

„ N-1 

n=K 

((n+l)2 _ _ (n^ _ 

X (B12) 
(2n + 1) 

A transformation to the original coordinate system yielded 

g N —1 
jk  =  -  s t  ï  \n  -  in"»  

n=k 

where. 

((n«)2 - k2)l/2 - (n^ - ̂ 2)1/= 

^ 
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Kquatioti was further s Imp 1:1 fled to yield 

J (B15) 

wnere 

B, A kn 
for n = k 

and (B16) 

B kn A k, n-1 A kn for n > k+1 

Other methods for numerical solution of Equation 35 are 

also available. Pearce (132b) suggested a procedure similar 

to the Nestor and Olsen method. Maldonado, e_t aJ. (53) 

described a method which yielded more reliable radial emission 

coefficients when the measured lateral Intensity distribution 

showed Irregular fluctuations, especially in regions where 

I(X) changed gradually with lateral position X. However, 

this procedure was computationally more complex than the 

Nestor and Olsen method described above. Maldonado and Olsen 

(5^) generalized the method of reference 53 to include asym

metric soui-ces and applied it to those which possessed a 

mirror plane of symmetry. Olsen, et aJ. (55) later extended 

this application to optically thin plasma cross-sectional 

geometries of arbitrary shape. 

Discussions on the errors associated with numerical 

methods may be found elsewhere (133,134) and will not be 

reiterated here. It is worth noting, however, that these 
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methods generally suffer when the error level on the measured 

I(X) profile values is significant because the numerical 

solution procedure for obtaining J(R) values greatly magnifies 

these errors. 

Data Approximation Methods 

In 1966, Cremers and Blrkebak (50) described a data 

approximation scheme for solution of Equation B3 or B5 which 

was faster than conventional numerical techniques and could 

readily be adapted to computer analysis . The basic assumption 

of this method was that the lateral intensity distribution 

function could be approximated by an n-th degree polynomial of 

the form 

I(x) = + C^X + C X^ + . . . + (B17) 

with the corresponding derivative function 

I'(X) = + 2CgX + 3C^X- + . . . + nC^X^"^ (BI8) 

When Equation BI8 was substituted into Equation B5 the 

following expression for the radial distribution function was 

obtained 

-, r^B (C. + 2CgX + . . . + nC^x""^) 
J(R) = - - — ^ p-wp dX (BI9) 
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An analytical solution of Equation B19 was possible when the 

polynomial coefficients were determined by least-squares 

techniques and the equation was separated into "n" component 

Integrals. 

Cremers and Birkebak cautioned that fitting the entire 

curve to a single polynomial resulted in peculiar radial 

profiles which precluded this approach because of the many 

poor fits that resulted. Consequently, they suggested sub

dividing the profiles into m zones and fitting an n-th degree 

polynomial to the form 

to each zone. To assure smooth transitions from zone to 

zone, the polynomial fits overlapped into the adjacent zones. 

When the differential form of Equation B20 was substituted 

into Equation B5 an integrable expression was obtained. 

If the integrant of Equation B5 is defined as 

a closer examination of the actual integrations indicated by 

this equation may be carried out. For I(X) divided into m 

zones and for a given R contained within a zone k such that 

Ik"' - k=o + .1 f»:' k = 1. 2 
1—1 

n 
m  ( B 2 0 )  

= - I]^(X)/((X^ - ( B 2 1 )  

R k—1 — < R < R 
k ( B 2 2 )  

the radial intensity is given by 
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J(R) = + Fi(R) (B23) 

where, (R) and P^(R) are defined by 

r \  
P (R) = S, dX (B24) 
ko k 

and 

R 

m r 1 
P (R) = S. dX for k < m 
^ l=k+lj ^ 

^1-1 (B25) 

= 0 for k = m 

The subdivision of the I(X) profile employed in these 

calculations is schematically represented in Pigure B-3. 

Tt should be noted that the zones were counted from the 

center where R^-0 to the outer radius of the source where 

Cremers and Birkebak made an additional refinement on 

the form of the assumed polynomial in Equation B20 because 

of the nature of the slope at K = Û. When Equation B20 was 

differentiated the following form was obtained 

and it was noted that I'(X) 0 at X = 0. Consequently, 

the profile did not possess the desired zero slope at the 
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center that a circularly symmetric distribution should have. 

To avert this problem, Cremers and Birkebak (50) suggested 

slope at X = Oj be employed for the inner-most zone, 1.e., 

Therefore, solutions of Equation B5 which utilize the zone 

dependency of Equations B20 or B27 were considered in this 

dissertation research. 

Cremers and Birkebak also suggested that (1) subdivision 

of the I(X) profile into five zones and (2) 4-th degree poly

nomial least-squares fitting of the data, were sufficient for 

most cases encountered in physical systems. The following 

discussions of the actual integration procedures employed 

here have been restricted to these suggestions. 

Method of integration for zones 2 - 5  

Examination of Equation B23 revealed that it was 

necessary to evaluate the integrals ^F^(R) and (R). Substi

tution of the 4-th degres polynomial of the form given by 

Equation B20 into Equation B24 yielded 

2 that a polynomial in X which possesses the desired zero 

( B 2 7 )  
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where, n = 4 and 

G(X,R) = - r2)1/2 (B29) 

Solutions for the integrals in Equation B28 may be found in 

most integral tables, e.g., (135). Upon integration of 

Equation B28 the following form was obtained 

= - ; & n ( X  + G(X,R) + 2 G(X,R) 

+ I (X G(X,R) + R^ & n ( X  + G(X,R))) 

+  4  ( G ^ ( X , R ) / 3  +  R ^  G ( X , R ) )  
Ri. 

R 
( B 3 0 )  

Evaluation of Equation B30 at the limits (R to R^) and 

combining terms yielded 

1 n, T Lr(,n, ,n; 

R 
)  +  2  G ( R ^ , R )  

^  2  R ,  +  G ( R  , R )  
+ I (R^ G(R^,R) + R"^ 

R 
) )  

+  4  ( G ^ ( R , ^ , R ) / 3  +  R ^  G ( R , ^ , R ) ) )  If' (B31) 

where, the following relations were used 

( R ^  -  =  G ( R ^ , R )  

£n(X + G(X,R)) = iln(R^ + G(R^,R)) for X  =  R 
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(R^ - = 0 = G(R,R) 

and 

An(X + G(X,R)) = iln(R) for X = R 

For a given R such that R^ 1 R 1 R^, ^F^(R) was the 

only integral that required evaluation. However, when k was 

less than m. Equation B25 indicated that F^(R) also had to be 

evaluated. This set of summed integrals possessed solutions 

identical to those of Equation B30 except that the limits were 

replaced by the appropriate values from B25, i.e., 

5 -, 
P X R )  =  I  ( -  ^ )  ( ( . C .  & n ( R  +  G ( R . , R ) )  
^ i=k+l TV 1 i 1 1 

+  2  G ( R j ^ , R ) )  +  ^  ( R j ^  G ( R ^ , R )  

+ R^ &n(Rj^ + G(Rj^,R))) + 4 .C^ (G^(R^,R)/3 

+ R^ G(Rj^,R))) - + G(Rj^_^,R)) 

+ 2 G(Rj^_^,R) + § (Rj^_^ G(Rj^_]^,R) 

+ R^ £n(R^_^ + G(R^_^,R))) 

+  4  (G^ (RJ^_^^ ,R ) /3  +  R^  G(RJ^_^ ,R ) ) ) )  (B32 )  

It should be noted that when the Integrals were summed from 

zone to zone, the predetermined least-squares polynomial 
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coefficients changed smoothly to the zone under consideration 

because of the overlapping of the fits into adjacent zones. 

Method of integration for zone 1 

From the previous discussion of the desired behavior of 

I(X) In the neighborhood of X = 0 (I'(X=0) = 0) It was 

apparent that a polynomial of the form of Equation B27 was 

required for values of R when 0 < R < R^, i.e., R was con

fined to zone 1. Differentiation, expansion, and substitu

tion of Equation B27 into B2k yielded 

AlC X x3 
.F.CR) = (-#)( — dX + 2 — dX 
^ G(X,R) G(X,R) 

'^1 ,c x^ r% .C. x"^ 
+ 3 I — dX + 4 — dX) (B33) 

G(X ,R)  J G(X ,R)  
R R 

where, n = 4 and the notation of Equation B29 was used. 

When the integration was performed and the limits were 

evaluated, ^F^(R) was given by 

^P^ (R)  =  ( -  G(R^ ,R )  +  2  (G^ (R^ ,R ) /3  

+ G(R^,R)) + 3 (R^ G(R^,R) 

+ ̂  R^ G^(R^,R) + ̂  G^(R^,R)) 

+ 4 (R^ GCR^,R) + R^ G^(R^,R) 

+ ̂ R^G^(R^,R)+yG'^(R^,R))) (B34) 
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Because the other zones (2 - 5 )  were not affected by the change 

in the zone 1 equation for I(X), F^(R) was evaluated in 

precisely the same manner established in Equation B32. 

Other data approximation methods are also available for 

solution of the Abel integral equation (B3) or its inverted 

form (B5). Freeman and Katz (56) suggested a curve-fitting 

procedure in which a single polynomial was fitted to the 

I(X) profile data. However, Cremers and Birkebak (50) 

cautioned that this method yielded peculiar line profiles 

when it was applied to arc data. Barr (57) suggested a 

method similar to that of Cremers and Birkebak which employed 

polynomials determined by least-squares techniques that 

yielded the best fit of the data over five-point intervals 

centered about each data point. 

Error analysis 

When Equation B3 was solved for the lateral displace

ment X = 0, the following form was obtained 

Therefore, the area under the radial intensity profile was 

predicted to equal the lateral intensity at zero displacement 

from the plasma axis. When test data were employed (50,53)j 

the agreement was better than 1% while for experimental data 

( B 3 5 )  
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it was 'vl to 5% for bell-type profiles and to 15% for 

toroidal curves. 

Equations BSl, B32, and B34 were readily amenable to 

differential error treatments (8l) so that the computational 

uncertainties in the radial Intensities obtained could be 

calculated. The radial Intensity defined by these equations 

was a function of the polynomial coefficients, , and the 

radial position R. When the uncertainty in R was assumed to 

be negligible, a maximum differential error treatment 

yielded 

where, the subscript k denoted the profile zone. For zone 1 

the uncertainty, AJ(R)^ was obtained by combining Equation 

336 with the expressions for and P^(R), Equations 834 

and B32, respectively. For the other zones (2 <_ k < 5) 

Equation B36 was combined with Equations B31 and B32 to yield 

the appropriate AJ(K)^ values. The âJvalues so obtained 

represented approximations to the maximum random calculation 

error in the corresponding J(R)^ values for each zone. 

Systematic errors such as those encountered when measuring 

lateral intensities were accounted for by other means, e.g., 

added to the random error estimates. 

5 3F^(R) 

^ i=k+l 3 C. ^ -J 
1 J 

( B 3 6 )  
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The uncertainties in the coefficients (A^Cj) were ob

tained from the error analysis techniques incorporated within 

the polynomial fitting method employed (reference 8l, Chapter 

8 ) .  
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APPENDIX C: 

ATOMIC PARTITION FUNCTION AND SAHA-EGGERT'S 

ELECTRON DENSITY CALCULATIONS 

To a first approximation, partition functions appear to be 

easily calculated by summing over all energy levels of the 

element of interest which are below the ionization limit; this 

would be accomplished with the expression (36) 

Z^~^(T) = I g^ exp(- (CI) 

where, z-1 is the ionization stage and is the statistical 

weight of the level, n, with energy E^ at temperature T. An 

immediate problem is encountered when attempts are made to 

apply the above procedure to the calculation of atomic 

partition functions namely, even the most complete listing of 

atomic energy levels (I36) contains only a fraction of those 

predicted for a given element. If the missing levels are 

reasonably high in energy, few problems will be experienced 

for temperatures below 7000 K. However, the calculated values 

may be seriously in error at higher temperatures or, for 

elements for which the missing levels are at relatively low 

energies. Also, when the ionization limit (E^ ̂ ) of the 

species is approached, the sum in Equation CI diverges because 

the number of discrete levels is unbounded while the 
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corresponding: energies (except for levels which autolonlze; 

36, p. l40) are restricted to values less than ^. 

Several methods for overcoming these difficulties have 

been reported (31, pp. 231-258). All these theories share the 

premise that there exists a finite maximum principal quantum 

number n* (sometimes referred to as the "effective" quantum 

number) and, accurate partition function values are obtained 

only when all energy levels for values of n below n* are con

sidered in the calculation. The effective quantum number (n*) 

and the corresponding energy (E^^) are functions of tempera

ture, electron number density, ion densities, and the effective 

nuclear charge of the species. Therefore, the summation in 

Equation CI must be truncated at the reduced ionization limit 

(RIL), E^~^ - AE^~^ where, AE^~^ is the Ionization lowering 

for lut! species in question (36). In this manner, only thote 

energy levels less than or equal to the RIL value are counted. 

This truncation precludes the possibility of counting a single 

level twice, once in a bound state and once in a free state. 

The energies of the levels near the ionization limit 

which are sufficiently hydrogen-like, are given by the Rydberg 

formula (36) 

1 T 

where, E^ is the ionization energy of atomic hydrogen 

(109,679 cm~^) and n ^ 4. The statistical weight of the level 
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E^~^, is given by = 2n^. When the term value, -E^/(n*)^, 

is combined with Equation C2, the effective principal quantum 

number is given by 

n «  =  ( C 3 )  

where, Ae = E^~^ - E^^^. The Ritz formula (117) may then be 

written as 

2 
n* = n — 06 — —2' 3 (C4) 

n 

where, z = 1 for neutral atoms, z = 2 for singly charged ions, 

z = 3 for doubly charged ions, etc., and a,3 are series param

eters. Drawin and Felenbok (31) suggested that Equation C4 

be used to complete each spectral series that was considered 

in the partition function calculation. Generally. the last 

two members observed in the series were used to evaluate a and 

3, which were subsequently employed with Equation C4 to calcu

late the remaining members of the series. In the case where a 

spectral series was predicted but for which no members were 

observed, an alternate series as closely related as possible 

was substituted and its degeneracy approximately increased to 

account for the unobserved terms. This method is reasonably 

accurate for elements with simple energy level schemes, 

however, its application to complex systems is overly 

elaborate. An alternate approach was reported by Griem (36) 
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and was applied to plasma simulation calculations by Barnett 

(137). This method for calculating atomic partition 

functions employed only those levels from reasonably complete 

configurations for which all states with principal quantum 

numbers less than a maximum value were observed. In this 

approach, the effective quantum number was defined by 

where, hydrogen-like character was assumed, Only those 

levels E with n < n contributed to the partition function 
n — max 

calculation. The procedure involved two steps: (1) selec

tion of n', the highest usuable principal quantum number for 

the species, and (2) addition of a correction factor (from n' 

to n ) with hydrogen-like character asauiued but still 

accounting for multiplicity differences. The complete 

partition function was then approximately given by (36) 

z~l 
i 

( 0 5 )  

n=l ' 

n 
max 2 

^ I 2n exp(-
n=n'+1 

- (z^EY/n^) 
( C 6 )  

kT 

where, the first summation was made over those levels which 

were included in the complete or nearly complete configura

tions and, the second summation was the correction term. In 
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the second summation, and were the spin and orbital 

quantum numbers of the parent configuration, l.£., the ground 

state of the next higher ionization stage z. The degeneracies 

in the first summation were given by = 2J^+1 where, was 

the orbital angular momentum quantum number for the (discrete) 

level and, the index n referred to all relevant quantum 

numbers (36). 

Barnett (137) demonstrated that the Ritz completion 

method and Griem's method yielded parallel trends in partition 

function calculations for reasonable temperatures (below 

15,000 K). Therefore, because Griem's method was computa

tionally simpler. Equation C6 was employed to calculate the 

neutral atom (z = 1) partition functions of several elements 

for subsequent use in Saha-Eggert's electron density studies 

for this dissertation research. The correcllon ter-iii was 

generally not needed for singly charged and higher ionization 

stages because the missing levels were high in energy for the 

elements considered. The value of n' for each element was 

determined in the following manner: (1) all observed spectral 

series were tabulated (136) with the corresponding maximuiri 

observed n values (nt ^^); (2) a weighted maximum principal 

quantum number, n^, was calculated according to the total 

degeneracy of each series term (n, = (23+1)(2L+1)(n^^^)); 
W UlaX 

(3) a weighted average maximum principal quantum number was 

defined by 
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n ( C 7 )  

where, = sum of the degeneracies of the observed spectral 

and, N = number of observed spectral terms; (4) n' was taken 

as the largest integer satisfying the inequality n' < n^^; 

and (5) the correction was begun at n" = (n'+l) where, n" was 

the smallest integer which satisfied the condition, n^^^ £ n" . 

Griem (36) concluded that the best procedure for selecting 

n' was neither clearly established nor extremely critical 

because the last terms of the correction sum rend to dominate 

its contribution to the partition function calculation. The 

approach outlined here was reasonable because the maximum 

principal quantum numbers of the observed levels were 

weighted according to the degeneracy of the spectral term of 

the series to which they belonged (n^„^ values) and, the luaX 

correction for missing levels was begun above a weighted 

average of these n^^^ values. The partition function values 

calculated by this procedure were in reasonable agreement with 

those reported by Drawin and Felenbok (31) and those calcu

lated by Barnett (137) for temperatures below 10,000 K. 

terms 

N 
( 0 8 )  



www.manaraa.com

172 

Use of the Saha-Eggert's Electron 

Density Program 

A FORTRAN IV computer program was written to perform the 

radial Saha-Eggert's electron density calculations and a 

complete listing of the source statements is included as 

C337EDNS. This program employed the partition function values 

which were calculated by the procedure discussed above. The 

data card requirements for this program are listed in Table 

C-1. 
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Table C-1. Data card requirements for C337EDNS 

Type 
# 

H Cards Columns Variable 
Name 

Format 

1 1 1- 5 NSETS 15 

2 500 1- 8 TSYM 2A4 

(max ) 11-20 TTEST FIO . 0 

21-30 QTESTd, 1) FIO.O 

31-40 QTEST(2, 1) FIO.O 

41-50 QTEST(3: 1) FIO.O 

3 1/set 1- 5 NRUNS 15 

4 1/run 1-73 
71-75 

XIDENT 
NUMAQP 

35A2 
15 

5 1/run 1-10 WAVEA FIO . 0 

11-20 WAVE I FIO.O 

21-30 GATOM FIO.O 

31-40 G ION FIO . 0 

41-50 EQATOM FIO . 0 

Remarks 

Number of data sets; one data set per 
Saha element 

Element identifier of partition 
function arrays 

Temperature array for partition 
functions 

Partition function array for neutral 
atom species 

Partition function array for first 
ion species 

Partition function array for second 
ion species 

Number of runs in a given data set 

Data set identification label 
Number of transition probability 
sources (5 max) 

Wavelength of atomic line (Angstrom 
units) 

Wavelength of ionic line (Angstrom 
units) 

Degeneracy of atomic line emitting 
level 

Degeneracy of ionic line emitting 
level 

Excitation energy of atomic line (cm 
units) 
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Table C-1. (Continued) 

Type § Cards Columns Variable Format Remarks 
if Name 

51-60 EQION PIO . 0 Excitation energy of ionic line (cm 
units) 

6a 1/run 1-50 A(l,j) 5F10 .0 Transition probability array for 
atomic line (5 max) 

6b 1/run A(2,j) Same as 6a except for ionic line 

7 1/run 1-•10 XIP FIO . 0 Ionization energy of atomic species 

11-20 DELXIP FIO. 0 
(cm~^ units) 

Ionization energy lowering 

8 1/run 1- c NR 15 Number of radial positions 

9 NR/run 1-
11-

10 
•20 

TR 
R 

PIO . 
FIO . 

0 
0 

Radial temperature array 
Corresponding radial position array 

10a NR/run 1-
21-

10 
30 

XI(1,1) 
DELIR(1,1) 

FIO. 
PIO. 

0 
4 

Radial intensity array for atomic line 
Corresponding relative uncertainty 
array {%) 

10b NR/run XI(1,2) 
DELIR(1,2) 

Same as 10a except for ionic line 
Same as 10a except for ionic line 
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c  
c  
c  
c  

c  
c  

c  
c  

1 
2 
3 
A 

C ********** C337EDNS ********* 5 
6 
7 

C PROGRAM TO CALCULATE ELECTRON DENSITIES FROM RADIAL TEMPERATURE 8 
C AND ATOM,ION LINE INTENSITIES 9 

1 0 
1 1 

C NUMAQP = NUMBER OF TRANSITION PROBABILITY PAIP.S (5 MAX) 12 
C NSETS=NUMBER OF DATA SETS 13 
C TSYM=ELEMENT IDENTIFIER FOR QTEST ARRAY ALSO STOPS TTEST READ 14 
C TTEST=TEMP ARRAYFOR INPUT PARTITION FUNCTIONS 15 
C QTEST(1•I )=PARTIT ION FUNCTION ARRAY FOR ATOM 16 
C QTEST<2.I?= " " " 1ST ION 17 
C QTEST <3. I )= " " " 2ND ION 18 
C NRUNS=NUMBEK OF RUNS PER DATA SET 19 
C XIDENT=IDENTIFICATION OF DATA SET 20 
C WAVEA=ATOM LINE WAVELENGTH (ANGSTROM UNITS) 21 
C WAVEI=ION " " " " 22 
C GATOM=UPPER LEVEL DEGENERACY FOR ATOM LINE 23 
C GION= •• " " " ION " 24 
C EQATOM=EXCITATI CN POTENTIAL CF ATOM LINE (RECIPROCAL CM UMTS) 25 
C EOION= " " " ION " " " " 26 
C A(L.J)=TRAKS PROS ARRAY FOR ATOM LINE(5 MAX) 27 
C A(2»J)= " " " " [ON " " 2 8 
C XIP=I CNIZATICN POTENTIAL OF /.TOM SPECIES (RECIPROCAL CM UNITS) 29 
C DeLlXP=LOWER IMG OF IONI2ATIOM POTENTIAL " " " 30 
C NR = NUMBER OF RADIAL POSIT ION:, 31 
C TR(I)=RADÏAL TEMP ARRAY 32 
C R(I)= " BIST " 33 
C XE ( I T 1 )=RAD IAL INTENSITY ARR/»Y FOR ATOM LI NE 34 
C XI(I.2)= " " " " ION " 35 
C DEL IR(I,1 ) = RADIAL ERROR ARRAY (PERCENT) FOR ATOM LINE 36 
C DELIRD ,2 ) = RADIAL ERROR ARFÎAY (PERCENT) FOR ION LINE 37 
C 38 
C 39 

DIMENSION SUMDEN( SI ) . SUMRAT( 551 ) T SUMS{ 51 ) . DELI R( 51 T 2 ) 40 
DIMENSION TTEST(500),S(51) 41 
DIMENSION TSYM(2) * QTESTD 3 » 50 0) .QZERO(51 ) » QPLUS< 51 ) .RATI ON(51 ) 4 2 
DIMENSION X I DENT(35),TR(51),R(51).XI(51,2),EDENS(51),A(2,5) 43 
DATA CHECKT/'ENDT'/ 44 
READI! 5,100) KSETS 45 

100 FORMAT(I5) 46 
DO 999 INDEX=T,NSETS 47 
DO 5 1=1,500 48 

4 FORMAT(2A4,2X,FLOOO,3F1OO4) 49 
READ(5,4) TSVM,TTEST( I ) ,QTEST( I , I ) .QTEST( 2. I ) .QTEST( 3,I ) 50 
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R A T I O N ( I ) = E X P N * Z R A T I O / R A T I O  1  0 4  
E D E N S f I ) = 4 « e 2 9 6 E 1 5 * R A T I O * T T E R M * E X P  1 0 5  
E R R l = 2 0 0 «  + ( D E L I R { 1 * 1  ) * * 2 ) + ( D E L l R ( I , 2 ) * * 2 ) + E R R F A C  1  0 6  
S t  I  ) = S O R T ( E R R l * E D E N S (  I  ) * E D E N S <  I  )  )  1 0 7  
S ( I  ) = S ( I ) / E C E N S ( I  )  1  0 8  
S U M D E N t I ) = S L K D E N ( I ) + E D E N S ( I )  1 0 9  
S U M R A T C I ) = S U M R A T < I ) + R A T I O N ( I )  1  1 0  

3 0  S U M S { I ) = S U M £ ( I ) + S ( I )  I  1  1  
W R I T E ( 6 . 1 0 0 0  )  X I D E N T  1 1 2  

1 0  0 0  F O R M A T ; I H l o T l O , ' E L E C T R O N  D E N S I T Y  C A L C U L A T I O N ;  I D E N T =  • , 3 5 A 2 )  1 1 3  
W R I T E < 6 . 1 0 0 1 )  W A V E A . G A T O M . E Q A T O M , A A T O M  1 1 4  

1 0 0 1  F C R M A T t / / / / / . T 1 5 .  • A T O M  L I N E  D A T A :  W A V E L E N G T H  =  •  , F  1 0 . 4 , 2 X t  • G Q  =  « 1 1 5  
1  » F 1 0 < ,  4 ,  2 X  .  » E Q  =  •  . F 1 0 . 4 . 2 X ,  •  A O P  =  • , F 1 0 « 4 J  1 1 6  

W R I T E ( 6 , 1 0 0 2 )  W A V E I  » G I  O N i  E Q I O N , A I  O N  1 1 7  
1  0  0 2  F O R M A T C / /  n T 1 5 »  •  I O N  L I N E  D A T A :  W A V E L E N G T H  =  •  , F  1 0 • 4 . 2 X ,  • G O  =  ' , F 1  0  1  1  8  

1 « 4 . 2 X . ' E Q  =  • , F 1 0 . 4 , 2 X t • A Q P  =  • . F 1 0 . 4 )  Î  1 9  
W R I T E ( 6 , 1 0 0 3 )  X I P . D E L X I P  1 2 0  

1  0  0 3  F 0 R M A T ( / / / / / » T 1 S . • I O N I Z A T I O N  P O T E N T I A L  =  ' , F 1 0 , 3 , 2 X . ' L O W E R I N G  O F  I  1 2 1  
I O N I Z A T I O N  P O T E N T I A L  =  ' , F 1 0 . 4  »  1 2 2  

W R I T E ( 6 , 1 0 0 4  >  1 2 3  
1  0 0 4  F O R M A T ( / / / / / . 1 1 0 .  ' R A D I U S '  . T 2 C  ,  ' T E M P E R A T U R E '  . T  3 5 , '  I O N  L  I N E  I N T '  , T 5  5  1 2 4  

2  ,  ' A T O M  L I h E  I N T '  , T 7 5 .  «  E L E C T R O N  D E N S I T Y ' , T 9 5 , ' I O N / A T O M  R A T I O ' , T 1  1 0  * 1  2 5  
a ' D E L T A  N E  «  P E R C E N T ' )  1  2 6  

D O  4 0  N = 1 b N R  1 2 7  
1  0 0 5  F O R M A T  { T 5  « F  1 0 . 4  , T 2 0 , F  1 : 0 . 4  ,  T 3 5  i  E  I  2  •  5  ,  T 5 5  ,  E  1  2  .  5  ,  T  7 5  ,  E  1  2 «  5  ,  T  9 5  ,  E  1  2 .  5  • 1  2 8  

I T l 1 0 . E 1 2 . S )  1 2 9  
4 0  W R I T E ( 6 . 1 0 0 5 )  R ( N ) « T R t N ) « X I { M , 2 ) . X I ( N » l ) . E D E N S ( N ) , R A T I O N ( N ) , S ( N )  1  3 0  

9 9 8  C O N T I N U E  1 3 1  
w K i T E t ô , 1 o o e )  1  3 2  

1 0 0 6  F C R M A T d H l  , / / i T 1 0 ,  ' A V E R A G E  V / . L U E S '  )  1  3 3  
W R I T E ( 6 , 1 0 0 4 )  1  3 4  
D O  5 0  N = 1 o N R  1  3 5  

1  0  0 7  F O R M A T ( T 5  o F  1 0 . 4  . T 2 0 . F 1 0 « 4 , T 3 5 , E I  2 . 5 . T 5 5 , E 1 2 . 5 . T 7 5 , E 1 2 . 5 , T 9 5 , E 1 2 . 5  . 1  3 6  
1 T H 0 . E 1 2 . 5 )  1  3 7  

S U M D E N ( N ) = S U N D E N ( N ) / N U M A Q P  1  3 8  
S U M R A T C  N )  = S U f f i A T (  N )  / N U M A Q P  1  3 9  
S U M S C  N ) = S U M S ( N > / N U M A Q P  1  4 0  

5 0  W R I T E ( 6 . 1 0 0 7 )  R f N ) . T R [ N ) , X I ( N , 2 ) , X I ( N , l ) , S U M D E N { N ) . S U M R A T ( N ) . S U M S (  1 4  1  
I N  Î  1 4 2  

9 9 9  C  G N T I N U E  1 4 3  
S T O P  1 4 4  
E N D  1  4 5  
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APPENDIX D: 

CONVOLUTION AND H ELECTRON DENSITY CALCULATIONS 

We consider the convolution Integral for the "folding" 

of lorentzlan and gaussian line profiles (61,93) 

+CO 

I^(AX) I^(AÀ* - A\) d(AX) (Dl) 

CO 

G L 
where, I (AX) = gaussian profile, I (AX) = lorentzlan profile, 

•p 
and I (AX) = folded line profile. Equation Dl mathematically 

expresses the effect of superlmposltion of the "smearing" 

L G 
function I on the gaussian line profile I . Each gaussian 

intensity contribution I (AX) at displacement AX from the 

unperturbed line center is smeared out over all other 

positions of the profile by the lorentzlan bi-Octuenlng function 

centered at AX. The contribution of this smeared Intensity to 

"P 
the I profile at a distance AX* from the unperturbed line 

G 
center is given by the product of the gaussian at AX, I (AX), 

with the lorentzlan centered at AX, i.e., I^(AX* - AX). The 

resJilting folded Intensity at the point AX* from the unper

turbed line center is obtained by integration over all 

intensities contributing at AX*. 

The total area under the line envelope remains constant 

so it is convenient to normalize 

I^(AX*) 
• /  
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/

+<» «+00 

I^(AX) d(AÀ) = j I^(AX) d.(AX) = 1 (D2) 

and, consequently 

, +00 

I^(AA) d(AX) = 1 (D3) 

Because convolution is commutative, either the gaussian 

or the lorentzian profile may be considered to be the smearing 

function; this is shown as follows. First, we define 

AX' = AX* - AX (D4) 

then, 

AX = AX* - AX' 

J / r> r > and 

d(AX') = d(AX*) - d(AX) 

but. 

d(AX*) = 0 (D6) 

thus. 

d(AX') = - d(AX) (D7) 

The change In the integration limits is given by 

AX = -«> => AX' = +00 

and (D8) 

AX = +00 => AX' = -00 
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Combining Equation D1 with the variable transformations given 

by Equations D5, D7, and D8 yields 

^ «-00 

/(AX*) = - I I^(AX* - AX') I^(AX') d(AX') (D9) 

*^+00 

but, the AX' variable is only an integration dummy so this 

equation may be written 

r+oo 

^ I^(AX) I^(AX* - AX) d(AX) (DIO) 

«.00 

where the relationship 

• — 00 /»+«> 

-u 
+ 00 —00 

has been usen-

A FORTRAN IV computer program was written to perform 

the convolution calculations described in Chapter II of this 

dissertation and a complete listing of the source statements 

is Included as C337COMV. The Cal-Comp plotting facility 

described in Appendix A was (optionally) employed to produce 

plots of the Hg Stark profiles folded with Doppler and 

instrument contributions, which were obtained from this 

program. This was accomplished in the PLOT subroutine, 

which made use of the SIMPLOTTER program library described 

in Appendix A. The PLOT subroutine and the CALL PLOT 



www.manaraa.com

I8l 

statement in the main program should be removed for Installa

tions where SIMPLOTTER is not available; the plotting 

capability will be lost if this is done. 

The user input variables for this program are defined at 

the beginning of the C337CONV listing. The card input of 

Stark profile data was designed to accommodate the format 

employed in the Stark profile tabulations of Vidal e^ al. 

(98). Either the Instrument broadening profiles which were 

read from data cards (ICONV = 1) or, internally generated 

Doppler profiles for the temperatures employed in the calcu

lations of reference 98 (ICONV = 0) could be employed as 

smearing functions. The broadening profile could be symmetric 

(ISYMBP = 0) for which only intensities at positive displace

ments from the center were required or, it could be asymmetric 

(I3YHBF - 1) for which complete profile data were required. 

Because the comment cards included in the C337CONV 

listing are generally self-explanatory, only a brief descrip

tion of the program operation will be presented here. First, 

the number of data sets (NSETS) was read where one data set 

was associated with each instrument broadening profile 

employed. The value of the primary DO loop variable (NUMSET) 

ranged from 1 to NSETS. Second, the appropriate number of 

runs (NRUNS) was read for the NUMSET value where NRUNS 

corresponded to the number of different electron density ( n  )  

values associated with the data set. Third, the relevant 
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instrument profile variables and the profile itself were read 

from data cards. Fourth, the variables associated with the 

run were input from data cards. Fifth, the reduced wavelength 

scaling factor defined by (98) 

DENOM = 1.25 X 10"^ (Dll) 

was calculated for the electron density run. The wavelength 

displacements and half-widths of the instrument profile were 

divided by this scaling factor to yield reduced values and the 

Instrument profile was area normalized. Sixth, the appropri

ate area normalized reduced Stark profile data (98) for 

positive displacements were read from data cards for the 

electron density run. Seventh, the convolution Integration 

calculations were performed and the resulting folded profiles 

were area normalized. Finally. the half-widths of the folded 

profiles were determined by appropriate Interpolation methods 

( 9 8 ) .  

Within the convolution calculation section of the 

program, the ratio of the reduced Instrument profile half-

width to that of the appropriate reduced Stark profile, I.e., 

r (s 
AX ^/AX ^ was calculated to determine the "narrowest" of the 

two profiles. kTien this ratio was 1.5 or greater, the 

convolution was integrated with respect to the "narrow" Stark 

profile (see Equation DIO) but, for values less than 1.5 it 

was performed with respect to the gaussian-like instrument 
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profile (Equation Dl). The Instrument profile displacement 

axis was divided into 100 parts for the Integration calcula

tions and the corresponding Intensity values were obtained by 

interpolation (98) between the original data points. 

Before the empirical "narrowness" test was devised the 

convolution integration had been carried out exclusively over 

the reduced Stark profile displacement variable and very 

F 
serious errors in calculated I (AA*) values were subsequently 

obtained, because integration over the wide reduced Stark 

profiles often obscured the effect of the narrower reduced 

Instrument broadening profile. When this test was incorpor

ated into the program the fine structure of these profiles was 

not lost and, consequently, the accuracy of the convolution 

calculation was significantly improved. 

The convolution calculation was carried out over 

successive four-point segments from the negative to the posi

tive integral limits: these limits were determined from the 

Stark and instrument broadening profiles employed in these 

G S 
calculations. The appropriate I •! products from Equation Dl 

or DIO were calculated for each segment and the area of that 

segment was determined which the DCSIQU function or the RLFOTH 

and RLDOPM subroutines. These routines were obtained from the 

International Mathematical and Statistical Libraries (IMSL) 

subroutine library (138) which was available at the ISU 

Computations Center. 
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The half-widths, profile maximum Intensity values, and 

profile center intensities obtained here agreed within 1-3% 

with the corresponding values from Vidal et al. (98) when 

these H. Stark and Doppler profile data were used to test the 
P 

convolution method developed in this dissertation research. 

The accuracy of this method was better than 0.1% for pure 

Doppler-Doppler test convolutions; the folded profile half-

widths and intensity values could be directly calculated for 

these data (93)• 

The contents of the data cards required for operation of 

the C337COMV program are listed in Table D-1. 

H q Electron Density Program p 
7 

The FORTRAN IV computer program which was written to per

form the electron density calculations from Stai-k broadening 

measurements on the H„ line (C337BROD) is listed after the 
p 

convolution program. Electron densities were calculated in 

this program with the iterative approximation procedure out

lined in Chapter II of this dissertation. The comment cards 

at the beginning of the listing of C337BROD define all input 

variables necessary for the operation of this program. The 

ALFA array in lines 33 to 38 of this program contained the 

reduced half-widths (a'j^), which were calculated for the 

line with the spectroscopic equipment employed in this inves

tigation. These values were obtained with the convolution 
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program discussed above (C337CONV) and are shown in Figure 

2 (Chapter IV) of this dissertation. Table D-2 outlines the 

contents of the data cards required for operation of 

C337BROD. 
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Table D-1. Data card requirements for C337CONV 

Type # Cards Columns Variable Format Remarks 
# Name 

1 1 1-• 5 NSETS 15 Number of data sets 

2 1/set 1-• 5 NRUNS 15 Number of runs for a given data set 

3 1/set 1-• 5 NPOINT 15 Number of points in the instrument 
profile array 

6-•10 ICONV 15 Doppler/instrument profile 
convolution selection 

11-•15 ISYMBP 15 Symmetric/asymmetric Instrument 
profile switch 

16-•20 IPLOT 15 Plot option switch 

4 NPOINT 1-10 WAVE FIO . 0 Wavelength displacement array of 
/set instrument profile (Angstrom units) 

11-22 PRFINT E12. 5 Corresponding Instrument profile 
Intensity array 

5 1/run 1-60 TITLE 15A4 Experiment label for run calculations 
61-68 HLINE 2A4 Name of hydrogen line corresponding 

to ILINE value 

6 1/run 1- 5 ISKIP 15 Option to print calculation 
Iterations (normally 0, i.e., not 
printed) 

6-10 ILINE 15 Number corresponding to H-, H , or Hg 
convolution ^ 

11-15 NTLOW 15 Beginning NT value for convolutions 
(see comment cards and reference 98 

16-20 NTUP 15 Ending NT value 
21-32 DENS E12. 5 Electron density for the run 
36-55 LDENS 5A4 Graph label for plot identification 
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Table D-l. (Continued) 

Type # Cards Columns Variable 
# Name 

7 1/run 1- S NALPHA 
6-1Ô NCONV 

11-15 ISYMCP 

15-20 IPUNCH 

21-25 IREAD 

2 6-30 IPROFL 

8 NAPHA 
/run 

1-10 

11-70 

ALPHA 

STARK 

Format Remarks 

15 Number of Stark profile data points 
15 Number of convolutions 
15 Symmetric/asymmetric Stark profiles 

to be convoluted with Instrument 
broadening profile 

15 Option to punch convoluted (folded) 
profiles 

15 Option to Input profile data from 
disk file (see comment cards) 

15 Option to apply asymptotic wing ^ 
formula in convolution calculation oo 
(see comment cards) ^ 

FIO.O Reduced displacement array for Stark 
profiles 

5E12.5 Stark profile intensity arrays for 
temperatures from NTLOW to NTUP 
(see comment cards and reference 
98) 
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c 1 
c 2 
C  3  
C  * * * * * * * * * *  C : Î 3 7 C O N V  * * * * * * * * *  4  
c 5 
C  6  
C  P R O G R A M  T O  C A L C U L A T E  C O N V O L U T I O N  I N T E G R A L  O F  U N E Q U A L L Y  S P A C E D  7  
C  N U M E R I C A L  D A T A  8  
C  9  
C  N S E T S = N U M 8 E R  O l -  D I S T I N C T  D A T A  S E T S ;  O N E  S E T  P E R  G l l V E N  I N S T R U M E N T  1 0  
C  B R O A D E N I N G  P R O F I L E  1 1  
C  N R U N S = N U M B E R  O F  R U N S  T O  B E  M A D E  H / I T H I N  A  G I V E N  B R O A D E N I N G  P R O F I L E  1 2  
C  S E T  '  1 3  
C  T I T L E = L A 8 E L  F O i  C A L C U L A T I O N  F O R  A  G I V E N  R U N  1 4  
C  I L I N E = 1 ,  H - B E T A  C O N V O L U T I O N  C A L C U L A T  I O N  1 5  
C  = 2 ,  H - G A M W A  "  "  1 6  
C  = 3 .  H - D E L T A  "  "  1 7  
C  N T = 1 ,  T E M P E R A T U R E  =  2 5 0 0  K  1 8  
C  = 2 .  "  =  5 0 0 0  K  1 9  
C  = 3 .  =  1 0 0 0 0  K  2 0  
C  = 4 .  • •  =  2 0 0 0 0  K  2 1  
C  = 5 .  • •  =  4 0 0 0 0  K  2 2  
C  H L I N E = L A B E L  F O R  L I N E  C O R R E S P O N D I N G  T O  I L I N E  2 3  
C  D E N S = E L E C T R O N  D E N S I T Y  F O R  A  G I V E N  R U N  2 4  
C  L O E N S = G R A P H  L A B E L  T O  I D E N T I F Y  P L O T S  ( I F  I P L O T = l  S P E C I F I E D )  2 5  
C  N A L P H A = N U M B E R  O F  R E D U C E D  D I S P L A C E M E N T S  F O R  W H I C H  T H E R E  A R E  S T A R K  2 6  
C  P R O F I L E  P O I N T S  T A B U L A T E D  2 7  
C  N C O N V = N U M 8 E R  O F  C O N V O L U T I O N S  T O  3 E  D O N E  W I T H I N  G I V E N  R U N  2 8  
C  C S E T  E Q U A L  T O  N A L P H A )  2 9  
C  I S Y M C P = 0 .  S Y M M E T R I C  P R O F I L E  T O  B E  C O N V O L V E D  W I T H  T H E  B R O A D E N I N G  3 0  
C  P R O F I L E :  R E A D  I N  R  I t  G H T  HALF ( P O S  D I S P L A C E M E N T )  3 1  
C  = 1 ,  N O T  S Y M M E T R I C ;  R E A D  I N  C O M P L E T E  P R O F I L E S  3 2  
C  I S K I P = 0 ,  S K I P  P R I N T I N G  I T E R A T  ] [  V E  V A L U E S  3 3  
C  N E  0 .  P R  S  N T  I N T E R M E D I A T E  V A L U E S  3 4  
C  I P U N C H = 0 »  C O N V O L V E D  P R O F I L E S  N O T  P U N C H E D  3 5  
C  = 1 .  C O N V O L V E D  P R O F I L E S  P U N C H E D  O N  C A R D S  3 6  
C  I P R O  =  L = 0 .  P U R E  S T A R K  O R  S T A R K . / D O P P L E R  P R O F I L E S  T O  B E  C O N V O L V E D  3 7  
C  W I T H  T H E  B R O A O E N I  N C ;  P R O F I L E  A S Y M P T O T I C  W I N G  3 8  
C  F O R M U L A ;  2 * 3 .  5 2 6 1  E -03*1 A L P H A * * ( - 2 . 5  )  )  •  A P P L I E D  3 9  
C  F O R  D I S P L A C E M E N T S  E l E Y O N D  T A B U L A T E D  P R O F I L E  D A T A  4 0  
C  N E  O o  A S Y M P T O T I C  S T  A R K / ' O O P O L E R  W I N G  F O R M U L A S  N O T  A P P L I E D  4 1  
C  N T L O W = S T A R T I N G  N T  V A L U E  F O R  C O N V O L U T I O N  C A L C N .  4 2  
C  N T U P - E N D I N G  w  «  t #  n  t i  4 3  
C  S T A R K : <  I , N T ) = T A S U L A T E D  B R O A D E N I N G  I N P U T  D A T A  A R R A Y  A T  T E M P E R A T U R E  4 4  
C  C O R R E S P O N D I N G  T O  N T ;  5 E 1 2 . 5 ,  C L O U M N S  1 1 - 7 0  4 5  
C  A L P H A ! I ) = P R O F ! L E  R E D U C E D  D I S P L A C E M E N T  A R R A Y  C O R R E S P O N D I N G  T O  4 6  
C  S T A R K I I . N T )  D A T A ;  C O L U M N S  1  -  1 0  4 7  
C  N P O I V T = N O o  P O I N T S  I N  T H E  I N S T R U M E N T  P R O F I L E  A R R A Y  4 8  
C  I C O N V  =  0 »  O O P P t . E R  C O N V O L U T I O N  4 9  
C  = 1 ,  I N S T R U M E N T  C O N V O L U T : .  O N  5 0  
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C  I S Y M 3 P  =  0 .  S Y M N i E T R I C  B R O A D E N I M G  P R O F I L E ;  R E A D  I N  F R O M  Z E R O  5 1  
C  D I S P L A C E M E N T  T O  P R f I N T ( N P O I N T } ;  P R O G R A M  G E N E R A T E S  5 2  
C  L E F T  ( N E G A T Ï V E  D I S P L A C E M E N T )  P O R T I O N  O F  P R O F I L E  5 3  
C  = 1 »  N O T  S Y M M E T R I C ;  R E A D  I N  C O M P L E T E  P R O F I L E  I N C L U D I N G  5 4  
C  N E G A T I V E  O I S P L A C E M M  N T  I N T E N S I T I E S  5 5  
C  I P L D T = 0 .  N O  P L O T S  G E N E R A T E D  5 6  
C  = 1 .  B R O A D E N I N G .  S T  A ' R K / D O P P L E R ,  A N D  C O N V O L V E D  P R O F I L E S  P L O T T E D  5 7  
C  I R E A D = 0 .  t t N P U r  P R O F I L E  D A T A  O N  P J N C H E D  C A R D S  5 8  
C = 1 ,  I N P U T  P R O F I L E  D A T A  R E A D  I N  F R O M  F I L E ,  C P S 0 7 . A 0 9 8 6 . C O N V  5 9  
C  ( R E Q U I R E S  A D D I T I O N A L  F I L E  R E A D  J C L  A N D  U T I L I T Y  P L / 1  6 0  
C  P R O G F I A M  T O  E D I T  F I L f £  D A T A  I N  C A R D  I M A G E )  6 1  
C  W A V E L Î I ) = D I S P L A C E M E N T  A R R A Y  ( A N G S T R O M S )  O F  I N S T R U M E N T  P R O F I L E  6 2  
C  P R F I M T ( I ) = C O R R E S P O N D I N G  I N T E N S I T Y  A R R A Y  6 3  
C  6 4  

D O U B L E  P R E C I S I O N  T < 1 2 ) . P C 8 )  6 5  
D I M E N S I O N  C  ( 5  ] i  .  S  ( 5 )  .  A  ( 2 )  «  B (  2 )  . X F (  6 )  . L O E N S  ( 5  )  .  D I N C C  2 0 0  )  6 6  
D I M E N S I O N  T E M P ( 5 ) , T I  T L E (  I  5  >  «  H L  I N H  I  2 :  )  , * A V E ( 3 ) . A L P H A *  1 0 0  )  . S T  A R K  {  1 0 0 .  6 7  

1 5 ) . D E L ( 3 . 5 ) . 4 W O R K (  5 0 ) . A L P H A D t 3 . 5 ) i X (  6 ) . X P O N E T (  6 » , F X <  6 )  6 8  
D I M E N S I O N  A P R O F I 1 0 0 )  . S T A R K L (  i 0 0  . 5  )  , C O N V (  1 0 0  . 5 )  » A R Ë A C 5 )  6 9  
D I M E N S I O N  X I N T R P ( î O O )  . Y I N T R P I  1 0 0 )  . A L E F T ( 5 )  . A R I G H T « 5 )  , H M A X L ( 5 )  . H M A X  7 0  

1 R ( 5 * , X M I O ( 1 0 0 ) . Y M I D (  1 0 0  ) . S H A ! _ F (  5 )  7 1  
D I M E N S I O N  W A V t z L f  1 0 0 )  .  P R F I N T C  1 0 0 ) .  X W A V E L C  1  0 0  )  .  X P R O F L I 1  0 0 )  7 2  
D A T A  T E M P / 2 5 0 0 « . 5 0 0 0 . . 1 0 0 0 0 o . 2 0 0 0 0 . . 4 0 0 0 0 . / . W A V E / 4 8 6 1 . 3 3 . 4 3 4 0 . 4 6 . 4  7 3  

1 1 0 1 . 7 3 /  7 4  
C  7 5  
C  R E A D  I N  N U M B E R  OF D A T A  S E T S  7 6  
C  7 7  

R E A D ( 5 , A )  N S E T S  7 8  
1  F O R M A T ( I 5 )  7 9  

D O  9 9 9 9  N U M S E T = 1 . N S E T S  8 0  
C  8 1  
C  R E A D  I N  N U M B E R  O F  R U N S  F O R  T H E  D A T A  S E T  8 2  
C  8 3  

R E A D *  5 , 1 0 0 )  N R U N S  8 4  
1 0 0  F O R M A T ( 1 5 )  8 5  

C  8 6  
C  R E A D  I N  I N S T R U M E N T  B R O A D E N I N G  P R O F I L E  F O R  T H E  D A T A  S E T  8 7  
C  8 8  

R E A D *  5 . 1 0 0 0 )  N P O I N T .  I C O N V . 1 S Y M B P .  I P L O T  8 9  
1 0 0 0  F O R M A T ( 4 1 5 )  9 0  

D O  1 0 1 0  1 = 1 , N P O I N T  9 1  
1 0 0 1  F O R M A T C F 1 0 . 0 i , E l  2 . 5 )  9 2  
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c  P R O F I L E  A T  T E M P E R A T U R E  S P E C I F I E D  B Y  N T  U P  A N D  N T L O W )  1 1 0  
c 1 1 1  

D E N O M = l . 2 5 E - 9 * ( D E N S * * 0 . 6 6 6 6 6 6 7 )  1 1 2  
W R I T E ( 6 . 5 0 )  D E M O M  1 1 3  

5 0  F O R M A T ( / « T 2 0 .  •  1 o  2 5 E - 0 9 * ( N E * * ( 2 / 3 )  ) =  •  » E 1 2 . 5 )  1  1 4  
W R I T E ! 6 . 5 5 )  1  1 5  

5 5  F O R M A T C / Z / . T I O . " G A U S S I A N  P R O F I L E  H A L F - W I D T H S * )  1 1 6  
W R I T E < 6 . 6 0 )  1 1 7  

6 0  F O R M A T  (  / •  . T 5  » •  T E M P *  » T 2 0 .  *  L A M D E L <  1  .  T  )  »  .  T  3 5 .  •  L A M D E L  (  2  .  T  )  *  .  T  5 0  .  •  L  A  M D E L  1 1 8  
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O E L ( 2 .E) = 0 . 0 0 1 5 4 8 *  S Q R T ( T E M P ( I ) )  1 2 2  
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c 1 3 0  
c R E A D  I N  P R O F I L E  D A T A  T O  B E  C O N V O L U T E D  W I T H  T H E  B R O A D E N I N G  P R O F I L E  1 3 1  
c 1 3 2  
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S R S L O W = I - l  2 9 3  
£ R S U P = I + l  2 9 4  
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I F C S T A R K L C I . N T ) . G T . H M A X R t N T ) )  G O  T O  1 9 7 0  2 9 8  
I F C S T A R K L Î 1 » N T ) . L T . H M A X L Ï N T ) )  G O  T O  1 9 9 0  2 9 9  
H M A X L C N T ) = S T A F ( K L (  I » N T  )  3 0 0  
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I L S L O W = I - 1  3 0 1  
I L S U P = I + l  3 0 2  
G O  T O  1 9 9 0  3 0 3  

1 9 7 0  H M A X R ( N T ) = S T A R K L <  I . N T  J  3 0 4  
I R S U O W = I - l  3 0 5  
I R S U P = I + l  3 0 6  

1 9 9 0  C O N T I N U E  3 0 7  
S R M A X = H M A X R ( N T )  3 0 8  
S L M A X = H M A X L f N T )  3 0 9  
D O  1 9 9 4  J = 1 . N A L P H A  3 1 0  
X I N T R A ( J ) = A P R O F ( J )  3 1 1  

1 9 9 4  y  I N T R P  (  J ) = S T A R K 1 L (  J .  N T  J  3 1 2  
H A L F R = 0 . 0  3 1 3  
H A L F L = 0 . 0 0  3 1 4  
I S H A P E = 0  3 1 5  
I F ( S R M A X « G T , Y I N T R P t J R C H K » )  I S H A P E = 1  3 1 6  
I F ( S L M A X , G T « Y I N T R P < J L C H K ) )  I S H A P E = 1  3 1 7  
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W R I T E ( 6 . 2 0 0 0 )  3 2 4  

2 0 0 0  F O R M A T ( / / « T 1 0 . « C O M P L E T E  P R O F I L E  D \ T A ' )  3 2 5  
W R I T E ( 6 . 2 0 0 1 )  3 2 6  

2 0  0 1  F O R M A T  ( / / « T 2 .  '  A L F A '  , T 2 0  »  '  S T A F ! K L <  2  5 0 0  )  •  . T 4 0  .  •  S T A R K L  C  5 0 0 0  )  •  , T 6 0 .  •  S T A  3 2 7  
I R K L t 1 0 0 0 0 )  ' . T E O . ' S T A R K L * 2 0 0 0 0  » •  t T l O O . *  S T A R K L ( 4  0  0 0 0 ) •  )  3 2 8  

D O  2 0 1 5  1 = 1 , N A L P H A  3 2 9  
2 0 0 2  F O R M A T  ( T 2 , E I 1 . 4 . T 2  0 , E l l « 4 « T 4 ( i , E l l  ,  4  , T 6 0  , E  I  I  .  4  ,  T 8 0  •  E l  1 . 4 , T I 0 0 , E H . 4  3 3 0  

I  I  3 3 1  
2 0 1 5  « R I T E ( 6 , 2 0 0 2 )  A P R O F I I  Î  ,  {  S T A R J C L d ,  J  )  ,  J =  1  ,  5  )  3 3 2  

W R I T E !  6 »  2 0 0 3 )  (  H M A X R C  E  )  »  I  =  1  .  Î )  )  ,  ( H M A X L (  J )  .  J = 1  .  5 )  , (  S H A L F  C  K )  , K = 1  , 5 )  3 3 3  
2 0 0 3  F O R M A T  ( / • / ' o T 2 ,  •  R  I G H T  M A X  I  N T  E M S  •  .  T  2 0  .  E I  1  .  4  ,  4  (  9 X  .  E 1 1  .  4  )  ,  /  ,  T 3  .  •  L E F T  M  3 3 4  

l A X  I N T E N S ®  , T 2 0  , E 1 1 o 4 , 4 ( 9 X , E 1 1  . 4 ) , / / , T 4 , • A V E  H A L F - W I D T H »  . T 2 0 , E I  1 • 4  «  3 3 5  
2 4 C 9 X . E l 1 . 4 ) )  3 3 6  

C  3 3 7  
C  P E R F O R M  T H E  C O N V O L U T I C N  C A L C U L A T I O N S  3 3 8  
C  3 3 9  

D O  9 9  N T = 1 , 5  3 4 0  
D O  2 9 9 0  I N U M = 1 , N A L A H A  3 4 1  

2 9 9 0  V £ N T R P <  I N U M ) = < ; T A R K L I  I  N U M . N T  )  3 4 2  
D O  9 9  J = l , N C O N V  3 4 3  
C O N V I J . N T ) = 0 « 0 0  3 4 4  
I F ( N T . L T . N T L O W )  G O  T O  9 9  3 4 5  
I F C  N T  . G T  , N T U P ] i  G O  T O  9 9  3 4 6  
I F (  I C O N V . E Q . l  ) l  G O  T O  3 0 0 0  3 4 7  
X U P = 1 « 0 0 0 / D E N O M  3 4 8  
I F ( N T . E 0 . 3 )  X U P = 1 . 5 0 / D E N O M  3 4 9  
! F ( N T . E Q . 4 )  X U P = 2 . O O / O E N O M  3 5 0  
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I F ( N T . E 0 . 5 )  X U P  =  3 . 0 0 / ' D E N O M  
X L O W = - X U P  
R A T I O = A L P H A D (  I L  I N E « N T  ) / 5 M A L F ( N T )  
K E Y = 0  
I F i R A T I O . G E . l . 5 1  K E Y = 1  
G O  T O  3 0  1 0  

3 0 0 0  X U P = X W A V E L < N P T S J  
X L O W = X W A V E L t I  I  
R A T I O = B H A L E / S H A L F ( N T }  
K E Y = 0  
I F ( h < A T I O « G E . l  •  5 )  K E Y = : L  

3 0 1 0  X A  r N C  =  X U P / 5 0 . C l 0  
X X = X L O W - X A I N C  
D O  3 0 2 0  M = 1 , 1 0 0  
X X = X X + X A I N C  

3 0 2 0  D I N C ( M ) = X X  
N D E T = 1 0 0  
I F ( K E Y . E Q . l )  N D E T = N A L P H A  
D O  9 8  K = 1 « N D E T , 3  
N L  =  K  
N U = N L  * - 3  
I F (  N U  • G E . N D E T  : i  N U = N D E T  
N = 0  
D O  9 6  I = N L . N U  
N = N + i  
I F 4 K E Y . E Q . 1 )  X ( N ) = A P R O F < J ) - A P R O F ( I )  
I F *  K E Y . E O . 1  )  G O  T O  3 0 3 1  
X d  N )  =  D I N C (  I  )  
X X X = A P R O F ( J ) - X C  N )  
I F d X X X . L T . A P R Q F C 1 ) )  G O  l O  3 0 3 0  
I F ( X X X . G T . A P R D F I N A L ' H A I )  G O  T O  3 0 3 0  
P O L Y N = 0 . 0 0  
C A L L  P L L Y N N t A P R O F . Y I N T R P  s P O L Y N . X X X . N A L P H A » 6 )  
S V A L U E = P O L Y N  
G O  T O  3 0 3 1  

3 0 3 0  B X X = A B S ( X X X )  
S V A L U E = 2 . 0 * 3 «  5 2 6 1 E - 0 3 * ( B X X * * ( - 2 . 5  )  >  
I F ( t P R O F L . N E . O B  S V A L U E = 0 o  

3 0 3 1  I F ( I C O N V . E Q . l Î  G O  T O  7 5  
X X 2 N = A B S ( X ( N ) i  
X P 0 N 5 T ( N ) = - 0 . 6 9 3 1 4 7 1 8 * (  X X 2 N * 4  2 .  ) / ( A L P H A D (  I L I N E . N T  ) * * 2 .  )  
X P T E S T = A B S C X P O N E T ( N ) )  
I F ( X P T E S T . G T . 6 0 )  G O  T O  7  2  
X P O N E T ( N  ) = E X P (  X P O N E T C  N )  1) /  f  1  ,  7  7 2 4 5 * D E L (  I L I  N E  , N T  )  )  
X P O N E T ( N ) = D E N O M # X P O N E T { N Î *  S O R T  O . 6 9 3 1 4 7 1 8 )  
I F i K E V . E Q * I Î  S V A L U E = S T A H K L C I i N T )  
F X ( N ) = S V A L U E * X P O N E T ( N )  
G O  T O  3 6  

7 2  X P O N E T f N 1 = 0 . 0  
F X ( N ) = 0 . 0 0  

351 
3 5 2  
3 5 3  
3 5 4  
3 5 5  
3 5 6  
3 5 7  
3 5 8  
3 5 9  
3 6 0  
3 6 1  
3 6  2  
3 6 3  
3 6 4  
3 6 5  
3 6 6  
3 6 7  
3 6 8  
3 6 9  
3 7 0  
3 7 1  
3 7 2  
3 7 3  
3  7 4  
3 7 5  
3 7 6  
3 7 7  
3 7 8  
3 7 9  
3 8 0  
3 8 1  
3 8 2  
3 8 3  
3 8 4  
3 8 5  
3 8 6  
3 8 7  
3 8 8  
3 8 9  
3 9 0  
3 9 1  
3 9 2  
3 9 3  
3 9 4  
3 9 5  
3 9 6  
3 9 7  
3 9 8  
3 9 9  
4 0 0  

VJ1 
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G O  T O  8 6  
7 5  X X X = X ( N )  ^ 0 2  

I F C K E Y . E Q . 1 Î  S V A L U E  =  S T A R K L <  I  » M T )  ^ 0 3  
I F f X X X . L T . X W A V E L t I ) Ï  G O  T O  8 0  ^ 0 4  
I F t X X X . G T . X W A V E C ( N P T S ) )  G O  T O  8 0  * 0 5  
P O L V N = 0 . 0 0  
C A L L  P L L Y N N C X W A V E L . X P R O F L , P O L Y N , < X X , N P T S , 6 »  ^ 0 7  
X P O N E T ( N J = P O L Y N  ^ 0 8  
G O  T O  8 5  * 0 9  

8 0  X P O N E T < N ) = O o O O  
8 5  F X ( N ) = S V A L U E * X P O N E T ( N )  
8 6  C O N T I N U E  

X F < N > = D Î N C (  Ï )  
I F C K E Y o E Q . l )  X F ( N ) = A P R O F « I >  
I F C K E Y . E Q . I J  X  (  N ) = A P R O F <  ; [  )  ^ J 5  

9 6  C O N T I N U E  
I E R = 0  
N U M 8 E R = 4  
N T E S T = N U - N L + 1  
I F ( N T E S T . L T . 4 )  N U M B E R = N T E S T  ^ 2 0  
C T E S T  =  O C S i Q U ( F X , X . N U M B E R , .  H W O R K  « 1 E R »  ^ 2 1  
: F ( I S K I P . E O . O )  G O  T O  9 9 7  * 2 2  

9 9 5  F O R M A T t T S O o  ' C T E S T =  •  ,  E 1  I  .  4 ,  2 X  •  F O  R  J =  *  .  I 3 . 2 X  ,  '  K =  '  ,  1 3  )  * 2 3  
W R I T E ( 6 , 9 9 6 )  C T E S T , J . K  * 2 4  

9 9 7  I F ( 1 E R . N E . 1 2 9 )  G O  T O  9 7  * | |  

L 0 5  F O R M 4 T  (  T  1 0  «  '  * * * * F L  A G * ' ) : * *  .  I E : R =  •  «  I  5 1  2 X  •  •  R E T  U R  N E D  F O R  C O N V O L U T I O N  4 2 7  
1  N U M B E R  « , I S . 5 X , • S U B S E T  K  V A L U E  =  * . 1 3 )  * 2 8  

W R I T E ( 6 . 1 0 6 )  A  P R O F ( J ) , N T  * 2 9  
1 1 0 6  F O R M A T  ( T  I S ,  * A L F A (  J ) =  •  »  E  1  2  .  5 ,  Î Î X  •  •  N T  =  ' . 1 3 )  * 3 0  

D O  6 0 0  M = 1 . 1 2  2 ^ 1  
6 0 0  T ( M ) = 0 . D 0  2 ^ ^  

D O  6 0  1  M = l , 2  
A ( M ) = 0 . 0 0  2 ^ %  

6 0 1  a < M )  =  0 . 0 0  7 : 2 ^  
D O  6 0 2  M = l , 8  

6 0 2  P 1 M )  =  0 . D 0  2 . t a  
D O  6 0  3  M = 1  ,  5  
C ( M ) = 0 . 0 0  I I I  

6 0 3  S ( M ) = 0 . 0 0  * % ?  
R S Q = 1 0 0 . 0  
M D = 2  
I  E R = 0  
ID=0 AAC 
S F C N U M B E R a E Q .  1  )  G O  T O  9 8  % * %  
I F ( N U M B E R . E G . 2 )  M D = 1  * * %  
DIF=0.0 
D O  6 0 8  M = 2 , N U M B E R  
L = M - 1  

4 4 1  
4 4 2  
4 4 3  
4 4 4  

4 4 7  
4 4 8  
4 4 9  

6 08 O I F = D I F < K F X t M  l i - F X ( L )  ) + * 2  * ® ®  
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X N M a R = N U M B E R  
DLF=SQRT(OIF)/XNMBR 
A V E = 0 . 0  
D O  6 0  9  M =  I ,  N U M B E R  

6 0 9  A V E = A V E t F X C M )  
AVE=AVE/XNMBR 
AVTEST=0.00 I*AVE 
IFC OIF .GT «A VTE ST } GO TO 604 
CTEST=AVE*(X(NUMBER)-X( 1 ) ) 
GO TO 611 

604 CONTINUE 
CALL RLFOTHCX,FX.NUMBER «RSQ.MO.ID.P.C.STA.B.IER) 
IF(IER.EQ0I29) GO TO 98 
IF<IER.EQ0I3OJ GO TO 98 
C ALL RLDOPM(C, LO.AOB.T) 
FUP=XF(NUMBER) 
FLOW=XF( 1  S  
FU2=FUP*FUP 
FL2=FLOW*FLOW 
FU3=FU2*FUP 
FL3=FL2*FLOW 
CTEST=9999. 
I F < I D . E Q . l )  C ( 3 ) = 0 « 0 0  
C T E S T  =  Î C (  a  ) * (  F U P - F L O W  )  ) ^ - <  < C (  
13) ) 

W R I T E C 6 , 6 1 0 )  C T E S T . I D  
( 5 1 0  F O R M A T  (  T I  O.  '  P O L Y N OMIAL APPf?  OX IM AT I  ON 

1 o 4 , 2 X , « D E G R E E -  « , 1 3 )  
G O  T O  9 7  

6 1 1  W R I T E f 6 . 6 1 5 )  C T E S T  
6 1 5  F O R M A T  <T10 . ' F X € N )  V A L U E S  N E £ A R L Y  C O N S T A N T  :  

ITO AREA; CTEST= •.E12.55 
9 7  C O N V ( J . N T ) = C O N V ( J . N T ) + C T E S T  

C O N T I N U E  

) / 2 . 0 ) * ( F U 2 - F L 2 ) ) + { ( C ( 3 ) / 3 . C ) * ( F U 3 - F L  

T O  AREA USED: C T E S T =  E l l  

SQUARE APPROXIMATION 

98 
99 

C  
c 
C  

C O N T I N U E  

D E T E R M I N E  A R E A  O F  C O N V O L V E D  P R O F I L E S  

D O  5 0  1  N T = 1 . 5  
A R E A C N T ) = 0 . 0 0  
H M A X H  N T ) = 0 . 0 0  
H M A X R ( N T ) = 0 . 0  0  
A L E F T ( N T ) = 0 . 0 0  
A R K G H T ( N T ) = 0 . 0 0  
D O  5 0 0  I = l . N C O N V . 3  
N L = I  
N U = N L + 3  
I F Î N U . G E . N C O N V )  N U = N C O N V  
N  =  0  
D O  4 9  5  J = N L . N U  

4 5 1  
4 5 2  
4 5 3  
4 5 4  
4 5 5  
4 5 6  
4 5 7  
4 5 8  
4 5 9  
4 6 0  
4 6 1  
4 6 2  
4 6 3  
4 6 4  
4 6 5  
4 6 6  
4 6 7  
4 6 8  
4 6 9  
4 7 0  
4 7 1  
4 7 2  
4 7 3  
4 7 4  
4 7 5  
4 7 6  
4 7 7  
4 7 8  
4 7 9  
4 8 0  
4 8 1  
4 8 2  
4 8 3  
4 8 4  
4 8 5  
4  8 6  
4 8 7  
4 8 8  
4 8 9  
4 9 0  
4 9 1  
4 9 2  
4 9 3  
4 9 4  
4  9 5  
4 9 6  
4 9  7  
4 9 8  
4 9 9  
5 0 0  
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N = N + l  5 0 1  
X F ( N ) = A P R O F ( J )  5 0 2  
X ( N  »  =  A P R O F ( J )  5 0 3  

5 0 4  
D E T E R M I N E  F I R S T  A P P R O X I M A T I O N S  T O  R I G H T  A N D  L E F T  P R O F I L E  5 0 5  
M A X I M U M S  U S I N G  T A B U L A T E D  (  U  N N O i R M A  L  I  Z E D  )  C O N V O L U T I O N  R E S U L T S  5 0  6  
A R E A  N O R M A L I Z A T I O N  A F T E R  S T A T E M E N T  T  5 0 1  5 0 7  

5 0  8  
I F ( A P R O F Î J Î o G T « 0 « 0 0 )  G O  T O  4 5  0  5 0 9  
I F C A P R O F ( J ) o E Q . O . O O Î  G O  T O  4 6 0  5 1 0  
I F ( C O N V (  J . N T )  . L T . H M A X L ( N T )  )  G Q i  T O  4 9 5  5 1 1  
H M A X L ( N T ) = C O N V <  J , N T )  5 1 2  
L J L Q W = J - 1  5 1 3  
L  J U P =  J - H  5 1 4  
G O  T O  4 9 5  5 1 5  

4  5 0  I F t C O N V ( J . N T ) « L E , H M A X R ( N T ) )  G O  T O  4 9 5  5 1 6  
H M A X R ( N T ) = C O N V ( J , N T )  5 1 7  
J R L O W = J - 1  5 1  8  
J R U P =  J - o - 1  5 1 9  
G O  T O  4 9 5  5 2 0  

4 6 0  I F ( C O N V ( J . N T ) e G T . H M A X R C N T ) )  G O  T 3  4 7 0  5 2 1  
I F < C O N V ( J . N T ) « L T . H M A X L ( N T ) )  G O  T O  4 9 5  5 2 2  
H M A X L < N T ) = C O N V ( J . N T )  5 2 3  
L J L O W = J - l  5 2 4  
L J U P = J + l  5 2 5  
G O  T O  4 9 5  5 2 6  

4 7 0  H M A X R ( N T ) = C O N V ( J . N T )  5 2 7  
J R L O W = J - l  5 2 8  
J R U P = J + 1  5 2 9  

4 9 5  F X ( N ) = C O N V ( J . N T )  5 3 0  
I E R = 0  5 3 1  
N U M B E R = 4  5 3 2  
N T E S T  =  N U - f ^  +  l  5 3 3  
I F ( N T E S T . L T . 4 )  N U M B E R - N T E S T  5 3 4  
A T E S T  =  O C S 1 Q U ( F X . X . N U M B E R  , H W O R K . 1 E R  >  5 3 5  
I F ( I E R . N E . & 2 9 )  G O  T O  4 9  7  5 3 6  
W R I T E ( i S , 2 0 4 )  M L . N U . N T  5 3 7  

2 0 4  F O R M A T  ( T I O  .  '  * * * * * F l . A G .  l E P  = 1 2 9  R E T U R N E D  F O R  A T E S T  W I T H  N L =  •  .  1 3  5 3 8  
1  l . 2 X . « N U =  • . I 3 . 2 X . * N T =  *  «  1 3 )  5 3 9  

D O  7 0 0  M = l , 1 2  5 4 0  
T O O  T ( M ) = 0 . 0 0  5 4 1  

D O  7 0 1  M = 1 . 2  5 4 2  
A ( M ) = 0 . 0 0  5 4 3  

7 0 1  8 ( M ) = 0 . 0 0  5 4 4  
D O  7 0  2  M = i . 8  5 4 5  

7  0 2  P C M  ) = 0 . D O  5 4 6  
D O  7 0  3  M = 1 . 5  5 4 7  
C ( M ) = 0 . 0 0  5 4 8  

7 0 3  S ( M ) = 0 . 0 0  5 4 9  
R S Q = 1 0 0 . 0  5 5 0  
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M D = 2  5 5 1  
I E R = 0  5 5 2  
1 0 = 0  5 5 3  
I F ( N U M B E R . E O . 1 )  G O  T O  5 0 0  5 5 4  
I F ( N U M B E R . E Q . 2 )  M D = 1  5 5 5  
D I F = 0 . 0 0  5 5 6  
D O  7 0 8  M = 2 . N U M B E R  5 5 7  
L = M - 1  5 5 8  

7 0 8  D  I F = D  I F + (  F X { M  1 - F X <  L )  )  • • 2  5 5 9  
X N M 8 R = N U M B E R  5 6 0  
D  I F = S O R T ( D I F } / X N M B R  5 6 1  
A V E = 0 . 0 0  5 6 2  
D O  7 0 9  M = l , N U M B E R  5 6 3  

7 0 9  A V E = A V E + F X ( M )  5 6 4  
A V E = A V E / X N M B R  5 6 5  
A V T E S T = 0 . 0 0 1 * A V E  5 6 6  
I F Ï D 1 F . G T . A V T E S T l  G O  T O  7 0 4  5 6 7  
A T e S T = A V E * ( X ( N U M B E R ) - X ( 1 3 )  5 6 8  
G O  T O  7 1 1  5 6 9  

7 0 4  C O N T I N U E  5 7 0  
C A L L  R L F O T H C X » F X » N U M B E R . R S Q » M D . I D . P » C « S . A » B . I E R )  5 7 1  
I F C l E R c E Q . l 2 9  »  G O  T O  5 0 0  5 7 2  
I F ( I E R 0 E Q . I 3 O Ï  G O  T O  S C O  5 7 3  
C A L L  R L D O P M d C . I D . A . B . T )  5 7 4  
F U P = X F ( N U M B E R )  5 7 5  
F L O W = X F ( 1 )  5 7 6  
F U 2 = F U P * F U P  5 7 7  
F L 2 = F L O W * F L O W  5 7 8  
F U 3 = F U 2 » F U P  5 7 9  
F L 3 = F L 2 * F L 0 W  5 8 0  
A T E S T = 9 9 9 9 .  5 8 1  
I F ( I D . E Q . l )  C ( 3 ) = 0 . 0  5 8 2  
A T E S T = C C ( 1 ) » ( F U P - F L O W ) ) + { ( C < 2 ) / 2 . 0 ) • ( F U 2 - F L 2 I ) + ( ( C ( 3 ) / 3 . 0 ) » ( F U 3 - F L  5 8 3  

1 3 ) )  5 8 4  
W R I T E C 6 . 7 1 0 )  A T E S T  5 8 5  

7 1 0  F O R M A T  C T I O . • P O L Y N O M I A L  A P P R O X I M A T I O N  T O  A R E A  U S E D :  A T E S T =  « « E l l  5 8 6  
1 . 4 *  5 8 7  

G O  T O  4 9  7  5 8 8  
T i l  W R I T E ( 6 t 7 1 5 )  A T E S T  5 8 9  
7 1 5  F O R M A T  ( T I O . ' F X C N )  V A L U E S  N E A R L Y  C O N S T :  S Q U A R E  A P P R O X  T O  A R E A :  5 9 0  

1  A T E S T =  * , £ £ 2 . 5 )  5 9 1  
4  9 7  A R E A < N T ) = A R E A ( N T ) + A T E S T  5 9 2  
5 0 0  C O N T I N U E  5 9 3  
5 0 1  C O N T I N U E  5 9 4  

C  5 9 5  
C  A R E A  N O R M A L I Z E  C O N V O L V E D  P R O F I L E S  A N D  M A X  I N T E N S I T Y  V A L U E S  5 9 6  
C  5 9 7  

D O  5 0 2  N T = l o 5  5 9 8  
I F ( N T . L T . N T L O W )  G O  T O  5 0 2  5 9 9  
I F C N T . G T . N T U P )  G O  T O  5 0 2  6 0 0  
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H M A X L  (  N T  )  =  H M A ) ( L  ( N T )  / A R E A I :  N T  )  6 0 1  
H M A X R < N T 1 = H M A X R ( N T l / A R E A C N T )  6 0 2  

5 0 2  C O N T I N U E  6 0 3  
W R I T E C Ô . 2 0 3 )  6 0 4  

2 0 3  F O R M A T  H  I H l  » • / , T 2 0 »  •  A R E A  N O R  M A I .  I  Z E D  C O N V O L U T I O N  R E S U L T S * )  6 0 5  
I F < I C O N V . E Q . O 9  W R I T E < 6 , 4 0 3 )  6 0 6  
I F (  I C O N V . E O . l  )  W R I T E< e . , 4 0 2 )  6 0 7  

4 0 2  F O R M A T  C T 3 0 i >  •  I  N S T R U M E N T  P R O F I L E  C O N V O L U T I O N * )  6 0 8  
4 0 3  F O R M A T  t T 3 0 1 .  « D O P P L E R  C O N V O L U T I O N  ( I N T E R N A L L Y  G E N E R A T E D  O O P P L E R  P R  O F  6 0 9  

I  * L E S )  *  )  6 1 0  
Ï F (  I P U N C H . E Q .  1  )  W R I T E (  7 ,  1 1  1 0  )  H L  E  ,  W A V E (  I L  I  N E  )  ,  O E  N S  6 1 1  

1 1 0  F O R M A T ( 2 A 4 « 2 X , F 7 . 2 . 2 X , ' A N G S T R O M S * , 2 X . ' E L E C  D E N S  =  ' . E 1 3 . 6 )  6 1 2  
W R I  T E  (  6 , 2 0 2  )  ( [  T E M P (  I  )  I  =  1  » 5  Î  6 1 3  

2 0 2  F O R M A T  ( / / , T  1 3  A L P H A '  , T 2 ! 5 , F 6 .  ( ) ,  '  K  •  ,  T 4 0  .  F 6  .  0  .  •  K «  . T 5 5  , F 6 . 0  ,  '  K  •  ,  T 7  6 1 4  
1 0  t F 6 . 0 , '  K "  . T 8 5 , F 6 . 0 .  '  K " )  6 1 5  

I F ( I P U N C H . E Q . a )  W R I T E ( 7 , 2 1 0 )  6 1 6  
2 1 0  F O R M A T * ' D E L T A  A L P H A  F O L L O W E D  B Y  C O N V O L V E D  P R O F I L E S ;  2 5 0 0 . 5 0 0 0 , 1 0 0 0  6 1 7  

1 0 . 2 0 0  0 0 $  t r  4 0 0 0 0 * )  6 1 8  
D O  1 9 9  J  =  1 o  N C O N V  6 1 9  
D O  1 9 3  K = 1 . 5  6 2 0  
! F ( K . L T . N T L O W )  G O  T O  1 9 8  6 2 1  
I F ( K « G T . N T U P )  G O  T O  1 9 8  6 2 2  
C O N V (  J , K  ) = C O N V (  J » K  J / A R E A d  K )  6 2 3  

1 9 8  C O N T I N U E  6 2 4  o  
I F ( I P U N C H e N E . 1 )  G O  T O  1 9 9  6 2 5  o  

1 0 9  F O R M A T ( F I O « 6 » 5 E 1 2 . 5 J  6 2 6  
W R I T E ( 7 .  1 0 9 )  A P R O F C  J  )  *  (  C O N V (  J> , M )  ,  M  =  1  . 5 )  6 2 7  

1 0 7  F O R M A T ( T 8 » E l l « 4 , T 2 1 . 5 ( 4 X . E l l , 4 ) )  6 2 8  
1 9 9  W R I T E  < 6 .  1 0 7 )  ; « , P R O F  €  J  )  , ,  (  C O N  V  (  -  ,  L  )  .  L =  1  .  5  )  6 2 9  

C  6 3 0  
C  C A L C U L A T E  T H E  H A L F - W I D T H  B Y  U S I N G  H A L F - M A X  I N T E N S I T Y  V A L U E S  6 3 1  
C  F O R  B O T H  R I G H T  A N D  L E F T  S I D E S  O F  T H E  C O M P L E T E  P R O F I L E .  6 3 2  
C  T H E  M A X  I N T E N S I T Y  V A L U E  F O R  E A C H  H A L F  I S  D E T E R M I N E D  B Y  U S I N G  6 3 3  
C  T H E  I N T E R P O L A T I N G  S U B R O U T I N E ,  P I  Y N N .  6 3 4  
C  T H E  R E S P E C T I V E  H A L F-W K T H S  F O F !  E A C H  S I D E  A R E  T H E N  D E T E R M I N E D  B V  6 3 5  
C  R E V E R S I N G  T H E  I N T E N S I T Y  A N D  D I S P L A C E M E N T  A R R A Y S  A N D  I N T E R P O L A T I N G  6 3 6  
C  A  V A L U E  W I T H  P L L Y N N  6 3 7  
C  6 3 8  

D O  2 9 9  1 = 1 , 5  6 3 9  
I F ( I . L T . N T L O W J  G O  T O  2 9 9  6 4 0  
I F ( I . G T . N T U P )  G O  T O  2 9 9  6 4 1  
J R C H K = ( N C O N V / 2 ) + 1  6 4 2  
J L C H K = J R C H K  6 4 3  
D O  2 4 9  J  =  l , N C C I N V  6 4 4  
X M I D C J  )  =  A P R O F (  J )  6 4 5  
r F <  A P R O F t  J )  . e c l . o  , 0 0  )  J R C H K = J  6 4 6  
J L C H K = J R C H K  6 4 7  

2 4 9  Y M I D ( J ) = C O N V ( J , I )  6 4 8  
C R M A X  =  H M A X R ( I  I  6 4 9  
C L M A X = H M A X L ( I )  6 5 0  
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H A I _ F R = 0 . 0 0  6 5 1  
H A L F U = 0 . 0 0  6 5 2  
I S H A P E = 0  6 5 3  
I F { C R M A X . G T o Y M I D ( J R C H K ) )  I S H A P E = 1  6 5 4  
I F ( C L M A X . G T o Y M I D (  J L C H K J  )  K S H A P ' E = l  6 5 5  
C A L L  H M A X ( X M I D . Y M I O • N C O N V  o 1  , L J L O W . L J U P . J R L O W . J R U P . C R M A X  » C L M A X  t  H A L F  6 5 6  

1 R . H A L F L »  I S H A P E )  6 5 7  
A L E F T ( I J = H A L F L  6 5 8  
A R I G H T ( I 1 = H A L F R  6 5 9  
H M A X R ( I 1 = C R M A X  6 6 0  
H M A X L ( f ) = C C M A X  6 6 1  

2 9 9  C O N T I N U E  6 6 2  
3 9 6  F O R M A T ( / ' » T 3  o *  R I G H T  M A X  I N T E N S  ' , T 2  1 , 5 ( 4 X , E 1 1 . 4 )  )  6 6 3  
3 9 7  F O R M A T  ( T 4 , ' L E F T  M A X  I  N T E M S  •  . T 2 ;  1  . 5  {  4 X  .  E  1 1  .  4  )  ; t  6 6 4  
3 9 8  F O R M A T C / » T 3 o «  R I G H T  H A L F - W  I D  T H  •  »  T 2  1  »  5  (  4  X  .  E  1  I  4  )  )  6 6 5  
3 9 9  F O R M A  r C T 4  « ' L E F T  H A L F - W I  D T H »  » T 2 ;  1  .  5  (  4 X  ,  E 1  1  .  4  >  I  6 6 6  

W R I T E ( 6 , 3 9 6 )  (  H M A X R  <  N  1  ) .  N  1 =  1  . £ >  )  6 6 7  
W R I T E ( 6 . 3 9 7 )  C H M A X L ( N 2 ) . N 2 = 1 , S I  6 6 8  
W R I T E ( 6 , 3 9 8 )  ( A R  I G H T (  1 1  ) , I  1 = 1  „ 5 )  6 6 9  
W R I T E ( 6 , 3 9 9 )  ( A L E F T (  I  2 )  , I  2 = I . S )  6 7 0  
W R I T E ( 6 , 5 1 0 )  ( A R E A C N N ) , N N = 1 , 5 ]  6 7 1  

5 1 0  F O R M A T ( / / . T 3 , ' A R E A d ) - A R E A ( 5 ) ' , T 2  2 , 5 ( 3 X , E 1 2 . 5 ) )  6 7 2  
I F (  I  P L O T  . N E . l  ! l  G O  T O  9 9 9 9  6 7 3  
C A L L  P L O T  (  A P R O F  ,  S T A R K L .  .  C O N V  ,  X  W A V E L  .  X P R O F L  *  N T  J P  ,  N T L O W ,  A L P H A D .  I  C O N  V  ,  6 7 4  

1  N P T S .  N A L P H A » N C O N V ,  I L I  M E . L D E N S  i »  6 7 5  
9 9 9 9  C O N T E N U E  6 7 6  

S T O P  6 7 7  
E N D  6 7 8  
S U B R O U T I N E  H M A X ( X , Y , N . I S Y M , I L L O W . I L U P . I R L O W . I R U P , Y R M A X , Y L M A X , H A L F R  6 7 9  

1 , H A L F L , I S H A P E Î  6 8 0  
D I M E N S I O N  X C l O O )  . Y (  1 0 0 ) , X H ( 5 !  » . r n C S l )  6 8 1  

C  6 8 2  
C  S U B R O U T I N E  T O  D E T E R M I H A L F - W I D T H S  F O R  R I G H T  A N D  ( O P T I O N A L L Y )  6 8 3  
C  L E F T  P R O F I L E S  6 8 4  
C  6 8 5  
C  I S V M = 0 .  S Y M M E T R I C  P R O F I L E  S O  O N L Y  C A L C U L A T E  R I G H T  H A L F - W I D T H  6 8 6  
C  N E  0  »  D E T E R M I N E  B O T H  R I G H T  A N D  L E F T  H A L F - W I D T H S  6 8 7  
C  6 8 8  
C  8 8 9  

N H A L F = N / 2  6 9 0  
I F ( I S Y M . E Q . O Ï  G O  T O  2 0 0 0  6 9 1  
N P L U S = N H A L F + 1  6 9 2  
I F < I S H A P E o E O . 1 )  N P L U S = I L L O W + l  6 9 3  
D O  1 0  1 0  1 = 1 , N F L U S  6 9 4  
X H <  I  )  = Y I  I  l  6 9 5  

1 0 1 0  Y H ( I ) = X ( I K  6 9 6  
X I N C = C  X {  I L U P )  -  X (  I L L O W  )  ) / l  0 0  6 9 7  
X X X = X ( I L L O W ) - X I N C  6 9 8  
D O  1 0  2 0  J = 1 . 1 0 0  6 9 9  
X X X = X X X + X I N C  7 0 0  
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7 0 1  
7 0 2  
7 0 3  
7 0 4  
7 0 5  
7 0 6  
7 0 7  
7 0 8  
7 0 9  
7 1 0  
7 1 1  
7 1 2  
7 1 3  
7 1 4  
7 1 5  
7 1 6  
7 1 7  
7  1 8  
7 1 9  
7 2 0  
7 2 1  
7 2 2  
7 2 3  
7 2 4  
7 2 5  
7 2 6  
7 2 7  
7 2 8  
7  2 9  
7 3 0  
7 3 1  
7 3 2  
7 3 3  
7 3 4  
7 3 5  
7 3 6  
7 3 7  
7 3 8  
7 3 9  
7 4 0  
7 4 1  
7 4 2  
7 4 3  
7 4 4  
7 4 5  
7 4 6  
7 4 7  
7 4 8  
7 4 9  
7 5 0  

P O L Y N = 0 . 0 0  
C A L L  P L L V N N d X o  Y . P O L Y N , X X K , N » 6  II 
I F < P O L Y N o G T « Y L ' 4  A X )  Y U M A X  =  P O L Y N  
C O N T I N U E  
P C L Y N = 0 . 0 0  
X X X = V L M A X / ' 2 , 0 0  
C A L L  P L L Y N N { X H , Y H . P O L Y N . X X X  t  M P L U S . 4 )  
H A L F L = P O L Y N  
J  2 = 0  
J 4 = 0  
I F < I S H A P E . E Q , 1 )  N H A L F = I R L O W + l  
DO 2 0  3 0  J 3 = W A L F . N  
J 4 = N - J 3 + N H A L F  
J 2 = J 2 + 1  
X H <  J 2 ) = Y ( J 4 )  
Y H f  J 2 ) = X ( J 4 )  
X I N C = ( X <  I R U P J - X C  I R L O W J i  )  /  I  0 0  . C  
X X X = X ( I R L O W ) - X I N C  
D O  2 0 4 0  J 5 = l « 1 0 0  
X X X = X X X + X I N C  
P O L Y N = 0 . 0 0  
C A L L  P I L L Y N N C X ,  Y  » P O L Y N « X X X . N , < )  )  
I F C  P O L Y N . G T . Y R M A X »  Y R M A X : = P O L > ' N  
C O N T I N U E  
P O L Y N = 0 . 0 0  
X X X = Y R M A X / 2 . 0  0  
C A L L  P L L Y N N C X H . Y H . P O L Y N , X X X . J 2 . 4 )  
H A L F R = P O L V N  
R E T U R N  
E N D  
S U B R O U T I N E  P L L Y N N *  X  ,  Y  P O L Y N  ,  ) C X X  ,  N  U M X  .  N P O L  Y  )  
D I M E N S I O N  X < 1  0 0 )  » Y i (  1 0 0 )  

N  P O I N T  P O L Y N O M I A L  I N T E R P O L A T I N G  S U B R O U T I N E  

T O  I N T E R P O L A T E  A  V A L U S  F O R  X)CX T H E  N P O L Y  N E A R E S T  K N O W N  P O I N T S  A R E  
S E L E C T E D  A N D  A N  I N T E R P O L A T I  N ( ;  P O L Y N O M I A L  O F  D E G R E E  N P O L Y - 1  I S  
F I T T E D  T O  T H E S E  P O I N T S  
X  A N D  Y  A R E  T H E  A R R A Y S  OF N U M X  K N O W N  P O I N T S  O N  T H E  C U R V E  
T H E  R E S U L T  I S  P O L Y N  

P O L Y N = 0 . 0  
N M = ( N P ( N _ Y + 1  ) / : >  
N M 1 = N M + 1  
N U P = N U M X + N M l - N P O L Y  
D O  1 0 2  J = N M l . N U P  
I F d X X X . L E . X C J  »  )  G O  T O  1 0 4  
C O N T I N U E  
J = N U P  
L = J - N M  
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L L L = L + N P O L Y - l  7 5 1  
D O  1 0 6  K = L . » L L L  7 5 2  
T E R M = l o O  7 5 3  
D O  1 0 5  M = L o L L L  7 5 4  
I F ( K . E Q . M )  G O  T O  1 0 5  7 5 5  
T E R M = T E R M * «  X X X - X 4  M )  ) • ( X ( K  > - X (  M )  >  7 5 6  

1 0 5  C O N T I N U E  7 5 7  
T E R M = Y ( K ) « T E R M  7 5 8  

1 0 6  P O C Y N = P O L V N + T E R M  7 5 9  
R E T U R N  7 6 0  
E N D  7 6 1  
S U B R O U T I  N E  P L O T  C  A P R O F  « S T A R K U i  C Q N V  «  X W A V E U . X P R O F L » N T U P , N T U O W . A L P H A D ,  7 6 2  

1  I C O N V , N P T S . N A L P H A » N C O N V o  I  L I  N E :  , L D E N S )  7 6 3  
D I M E N S I O N  L B P t S )  , L S D P t 5 > . L C P (  5 )  . _ T I  ( 5 )  , L T 2 ( 5 )  , L T 3 ( 5 ) , L T A ( 5  )  . L T 5 (  5 >  7 6 4  

1 , L I  N E  1(5),L I  N E  2 ( 5 )  ,  L I  N E 3 (  5 )  . / . P R O F  1 1 0 0 ) .  S T A R K L C  1  0 0  . 5  )  •  C O N V U  1 0 0 .  5 )  . X  7 6 5  
2 W A V E L (  1 0 0  »  . X P R O F L (  1 0 0  3  .  A L P H A C '  1 3 . 5 )  . L D E N S C  5 ) . 3  P R  O F  (  1 0 0 . 5 )  . X K I O O )  .  7 6 6  
3 X 2 ( 1 0 0  )  . Y l  ( [  1 0 0 )  •  Y 2 (  1 0 0  )  o L B L T (  5) 7 6 7  

D A T A  L B P / ® 3 R O A *  .  « D E N I  " .  " N G  P  «  ,  •  R D  F I  •  .  •  L E  •  /  .  L S D P  /  •  S T  A R  •  .  «  K - C ' O  •  .  •  P  7 6 8  
i P L E » » * R  P R » . « O F  ' / . L C P / » C O N \ /  '  . ' O L V E ' . *  D  • .  • P R O F •  . •  I L E  « / . L T l / ' T  7 6 9  
2 E M P * , »  » . ' 5 ; 5 0 0 * o »  K  "  .  •  •  /  »  L T 2 / ' •  T E M P  •  .  »  • . • 5 0 0 0 ' . '  K  • ,  7 7 0  
3 *  • / . L T 3 / * 1 E M P » » •  « . ' 1 0 0 0 * . " 0  K  • , L T 4 / • T E M P " . •  7 7 1  
4 * 2 0 0 0 * . " 0  K  ' , '  » / , L T 5 / ' T E M P ' . »  • . • 4 0 0 0 » . * 0  K  ' . '  ' /  7 7 2  

D A T A  L  f N E E / ' H - B E »  .  »  T A  »  .  " 4  8 6  1  '  ,  '  . 3 3  '  .  '  A  •  /  .  L  I  N E 2 / ' •  H - G A  •  ,  •  M M  A  •  7 7 3  
1  «  ® 4 3 4 0 *  .  •  o 4 6  « . « A  «  / . L I N E 3 / '  ' H - 3 E  '  .  ' L T A  •  .  •  4  1  O  1  '  .  •  .  7 3  « . ' A  • /  7 7 4  

I F ( I C O N V . E O . l ]  G O  T O  I C O  7 7 5  
D O  1 0  I = 1 „ S  7 7 6  
D O  1 0  J = l o N A L F ' H A  7 7 7  
A 2  =  A P R O F C  J ) * A F ' R O F <  J )  7 7 8  
X P N T = - 0 . 9 6 3 1 4 7 1  8 * A 2 / (  A L P H A D  (  J,{_ I N E  .  I  ) * * 2  )  7 7 9  
X P T E S T = A B S < X P N T I  7 8 0  
I F ( X P T E S T o G T . 4  5 )  G O  T O  9  7 8 1  
D P R O F C J .  I  ) =  ( S O R T  ( 0 . 6 9 3 1  4 7  1 8 )  * ( E X P (  X P N T )  )  / (  1 .  7 7 2 4 5 *  A L P H A D (  I L I N E .  I I  7 8 2  

1  J  7 8 3  
G O  T O  1 0  7 8 4  

9  D P R O F C J , I ) = 0 . 0 0  7 8 5  
1 0  C O N T I N U E  7 8 6  

N P T S = N A L P H A  7 8 7  
1 0 0  D O  9 9 9 9  N T = N T L O W , N T U P  7 8 8  

D O  1 1 0  1 = 1 . N A L P H A  7 8 9  
K Î C I ) = A P R O F ( I 1  7 9 0  
I F (  I C O N V . E O.l ]i G O  T O  1 1 0  7 9 1  
X U A V E L C I ) = A P R O F ( I )  7 9 2  
X P R O F L d  ) = O P R O F ( I . N T )  7 9 3  

1 1 0  Y l  (  I  } = S T A R K L (  ] [  . N T )  7 9 4  
D O  1 2 0  I = l . N C O N V  7 9 5  
X 2 (  I ) = A P R O F < I  ] l  7 9 6  

1 2 0  Y 2 ( I ) = C O N V ( I . N T )  7 9 7  
C A L L  G R A P H  ( N P T S . X W A V E L . X P R O P L . O . 7 . 8 . 0 . 1 0 . 0 . 0 . 0 . 0 . 0 . ' A L P H A  ( N O R M A L  7 9 8  

1  I Z E D »  ;  • .  »  A R E A  N O R M  I N T E N S I T V  :  •  .  • C O N V O L U T I  O N  P R O F I L E S '  . L D E N S )  7 9 9  
I F (  I L  I N E . E Q . 3  ) l  G O  T O  3 0 0  8 0 0  
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I F d  I L  I N E . E Q . 2 )  G O  T O  2 0 0  8 0 1  
I F ( [  I L  I N E . E Q . l  )  G O  T O  1 2 5  8 0 2  

1 0 0 0  F O R M A T ( / / . T 1 0 . » * * * * * F L A G * * * * *  E ^ R O R :  I L I N E  N O T  S P E C I F I E D  C O R R E C T  8 0 3  
I L Y ;  N O  P L O T S  G E N E R A T E D * )  8 0 4  

H R I T E < 6 * 1 0 0 0 )  8 0 S  
R E T U R N  8 0 6  

1 2 5  CALL G R A P H S t N P T S . X W A V E L . X P R O F t o O . 1 0 7 . L I N E 1 )  8 0 7  
I F I N T . E Q . S )  G O  T O  1 4 6  8 0 8  
I F 1 N T , E Q « 4 )  G O  T O  1 4 6  8 0 9  
I F ( N T . E Q . 3 )  G O  T O  1 4 4  8 1 0  
I F { N T  « E Q . 2 )  G O  T O  1 4 2  6 1 1  
I F f N T . E Q . l )  G O  T O  1 4 0  8 1 2  

1 0 1 0  F O R M A T ! / , T 1  O .  '  # * * * * F L A G * # : * * *  E R f l O R  I N  N T  L O W  O R  N T U P » )  8 1 3  
W R I T E ( 6 . 1 0 1 0 )  8 1 4  
R E T U R N  8 1 5  

1 4 0  D O  1 4 1  N = 1 . 5  8 1 6  
1 4 1  L B L T (  1 M ) = L T 1  C N )  8 1  7  

G O  T O  1 5 0  8 1 8  
1 4 2  D O  1 4 3  N = 1 . 5  8 1 9  
1 4 3  L B L T C N > = L T 2 C N )  8 2 0  

G O  T O  I S O  8 2 1  
1 4 4  D O  1 4 5  N = 1 , 5  8 2 2  
1 4 5  L B L T C  N Î = L T 3 € N :  )  8 2 3  

G O  T O  1 5 0  8 2 4  
1 4 6  D O  1 4 7  N = l » 5  8 2 5  
1 4 7  L B L T C N » = L T 4 C N )  8 2 6  

G O  T O  1 5 0  8 2 7  
1 4 8  D O  1 4 9  N = 1 . S  8 2 6  
1 4 9  U B L T C  N  J i = : U T 5 « N Î  8 2 9  
1 5 0  C A L L  G R A P H £ € N P T S . X W A V E L , ) ( P R O F L » 0 .  1 0 7 , L 8 L T  )  8 3 0  

C A L L  G R A P H S f i N P T S « X W A V E L , X P R O F L » 1 , 1 0 7 . L B P )  8 3 1  
C A L L  G R A P H S ( N A L P H A , X I , Y 1  «  2 .  l O T . L S D P )  8 3 2  
C A L L  G R A P H S ( N C O N V , X 2 , Y 2 , 3 . 1 0 7 , L C P )  8 3 3  
G O  T O  9 9 9 9  8 3 4  

2 0 0  C A L L  G R A P H S f i N P T S , X W A V E L , X P R O F L , 0 , 1 0 7 , L Î N E 2 )  8 3 5  
I F C N T . E Q « 5 )  G O  T O  2 4 8  8 3 6  
I F C N T . E Q . 4 )  G O  T O  2 4 6  8 3 7  
I F C N T . E Q . 3 )  G O  T O  2 4 4  8 3 8  
I F C N T . E Q . 2 )  G O  T O  2 4 2  8 3 9  
I F ( N T . E Q . l )  G O  T O  2 4 0  8 4 0  

2  0 0 0  F 0 R M A T ( / , T 1 0 , ' * * * * * F L A G * * * * *  E R R O R  I N  N T L O W  O R  N T U P ' )  8 4 1  
W R I T E C 6 , 2 0 0 0 )  8 4 2  
R E T U R N  8 4 3  

2 4 0  D O  2 4 1  N = 1 , 5  8 4 4  
2 4 1  L B L T C  N ) = L T 1 ( N )  8 4 5  

G O  T O  2 5 0  8 4 6  
2 4 2  D O  2 4 3  N = 1 , 5  8 4 7  
2 4 3  L B L T C  N D = L T 2 ( I N  Î  8 4 8  

G O  T O  2 5 0  8 4 9  
2 4 4  D O  2 4 5  N = 1 , 5  8 5 0  
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2 4 5  

2 4 6  
2 4 7  

2 4 8  
2 4 9  
2 50 

3 0 0  

000 

3 4 0  
3 4 1  

3 4 2  
3 4 3  

3 4 4  
3 4 5  

3 4 6  
3 4 7  

3 4 8  
3 4 9  
3 5 0  

8 5 1  
8 5  2  
8 5 3  
8 5 4  
8  5 5  
8 5 6  
8 5 7  
8 5 8  
8 5 9  
860 
861 
862 
8 6 3  
8 6 4  
8 6 5  
866 
8 6 7  
868 
8 6 9  
8 7 0  
8 7 1  
8 7 2  
8 7 3  
8 7 4  
8 7 5  
8 7 6  
8 7 7  
8 7 8  
8 7 9  
880 
881 
882  
8 8 3  
8 8 4  
8 8 5  
886 
8 8 7  
888 
8 8 9  
8 9 0  
8 9  1  
8 9 2  

L B U T <  N ) = L T 3 ( N I  
G O  T O  2 5 0  
D O  2 4 7  N = l , 5  
U B L T ( N J = L T 4  « N )  
G O  T O  2 5 0  
D O  2 4 9  N = l , 5  
U B L T C  N I » = L T 5 ( N )  
C A L L  G R A P H S Î N P T S . X W A V E L . X P R O F L . O . 1 0 7 . L B L T )  
C A L L  G R A P H S ( N P T S . X W A V  E L , X P R O F L ,  1 ,  1 0 7 , L 8 P )  
C A L L  G R A P H S Î N A L P H A . X 1 , Y 1 , 2 . 1 0  7 , L S D P )  
C A L L  G R A P H S  { N C O N V  .  X 2  ,  Y 2  «  3  ,  1  0 7  i . L C P  >  
G O  T O  9 9 9 9  
C A L L  G R A P H S ( N P T S . X W A V E L . X P R O F L . O . 1 0 7 , L I N E 3 )  
I F *  N T . E Q . S D  G O  T O  3 4 8  
: F ( N T . E Q . 4 )  G O  T O  3 4 6  
I F ( N T . E 0 . 3 )  G O  T O  3 4 4  
I F ( N T « E 0 . 2 J  G O  T O  3 4 2  
I F C N T . E Q . I D  G O  T O  3 4 0  
F O R M A T * / . T I O , «  L A G * * * * *  E R i O R  I N  N T L O W  O R  N T U P «  )  
W R I T E ( 6 . 3 0 0 0 )  
R E T U R N  
D O  3 4 1  N = l o 5  
L B L T d  N ) = L T 1  ( N )  
G O  T O  3 5 0  
D O  3 4 3  N = 1 . 5  
L B L T i t  N ) = L T 2  < N  )  
G O  T O  3 5 0  
D O  3 4  5  N = l , 5  
L B L T H  N Î = L T 3 < N )  
G O  T O  3 5 0  
D O  3 4 7  N = l , 5  
L B L T t  N ) = L T 4 t N 1  
G O  T O  3 5 0  
D O  3 4 9  N = E . 5  
L B L T <  N ) = L T 5 ( N 3  
C A L L  G R A P H S < N P T S  I. X W A V E L  « X P R O F L . 0 .  1  0 7 . L B L T  Î  
C A L L  G R A P H S ( N F > T S » X W A V E L  . X P R O F L ,  1 ,  1  0 7 , L B P )  
C A L L  G R A P H S  < N  A L P H A .  X I  « Y 1 . 2 . 1 < ) 7 , L S D P )  
C A L L  G R A P H S ( N C O N V , X 2 , V 2 , 3 , 1 0 7 , L C P )  
C O N T I N U E  
R E T U R N  
E N D  
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Table D-2. Data card requirements for C337BROD 

Type rr Cards Columns Variable Fermât Remarks 
# Name 

1 

2 

3 

1 

1/set 

1/run 

1/run 

NRAD 
/run 

1- 5 

1- 5 

1-60 
61—68 

1- 5 
6-10 

1-10 
11-20 

21-30 

NSETS 

NRUNS 

TITLE 
HLINE 

ILINE 
NRAD 

RAD 
TRAD 

HALF 

15 

15 

15A4 
2A4 

15 
15 

FIO . 0 
FIO . 0 

FIO .0 

Number of data sets 

Number of runs within data set 

Experiment label 
Name of hydrogen line 

Line identification number 
Number of positions for electron 

density calculations 

Radial position array 
Corresponding radial temperature 

array 
Corresponding radial half-width 

array 
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C  1  
C  2  
C  3  
C  * * * * * * * * * *  C 3 3  7 B R O D  * 0 * * * * 4 * * *  4  
C  5  
C  6  
C  P R O G R A M  T O  C A L C U L A T E  E L E C T R C M  N U M B E R  D E N S I T Y  F R C M  B R O A D E N ! N G  D A T A  7  
C  F O R  T H E  B A L  M E R  S E R I E S  H Y D R O G E :  l \  L I N E S  8  
C  9  
C  1 0  
C  N S E T S  =  N U M 8 E R  O F  S E T S  O F  C A T  A  1 1  
C  N R U N S = N U M 8 E R  O F  R U N S  W l  I N  < ; I V E N  D A T A  S E T  1 2  
C  T  E T L E  =  E X P E R  I M E N T  T I T L E  O F  A  ( i l V E N  R U N  1 3  
C  H L I N E  =  N A M E  C F  B A L M E R  S E R I E S  l . I N E  1 4  
C  ( H - B E T A ,  H - G A M M A ,  H - D E L T A )  1 5  
C  I L I N E = 1 ,  H - B E T A  C A L C U L A T I O N  1 6  
C  = 2 .  H - G A M M A  C A L C U L A T I O N  1 7  
C  = 3 .  H - D E L T A  C A L C U L A T I O N  1 8  
C  N R A D = N U M B E R  O F  R A D I A L  P C S  I T  I O N S  F O R  D E N S I T Y  C A L C U L A T I O N  1 9  
C  R A O < N j = R A D  l A L  P O S I T I O N  A R R A Y  { N = l «  T C  N R A D >  2 0  
C  T R A D ( N i = T E M P E R A T U R E  A R R A Y  C O R R E S P O N D I N G  T O  R A D ( N )  2 1  
C  H A L F ( N ) - F U L L  ( M E A S U R E D )  H A L F - W I D T H  A T  H A L F  M A X  I N T E N S I T Y  A R R A Y  2 2  
C  C O R R E S P O N D I N G  T O  R A D K N )  A N D  T R A D ( N )  2 3  r v )  
C  2 4  o  
C  2 5  
C  2 6  

D I E  M E N S  I O N  D E N S  ( 9  )  » T E M P (  5  } .  A L F A  ( 4 5 )  , T I T L E !  1  5  )  ,  H L  I N E (  2 )  . * A V E ( 3 )  . H A L F  2  7  
1 (  3 5 )  » R A D (  3 5  )  »  T R A D ( 3 5 )  .  A L . F  A D  ( ' )  .  5  )  .  X (  9 )  ,  Y (  9  )  » X I  N T R P (  5  )  ,  Y  I N T R P ( 5 )  , E C E  2  8  
2 N S < 3 5 ) , A L P H A ( 3 5 )  2 9  

D A T A  T E M P / 2 5 0 0 . . 5 0 0 0 .  . 1 0 0 0 0  . .  2 0 0 0  0 o  $ 4 0 0 0 0 . / . D E N S / l . O O O E + 1 2 , 3 . 1 6 2 E +  3 0  
1 1 2 ,  l e  O O O E + 1 3 .  ; j .  1 6 2 E + 1 3 ,  l » 0 0 0 l £  +  1 4 , 3  .  1 6 2 E + 1  4  » Z . 0 0 0 E + 1 5 . 3 . 1 € 2 E  +  1 5 , 1 . 0  3 1  
2 0 0 E  +  1 6 / , W A V E / 4 8 6  I « 3 3 9 4 3 4 0 . 4 6 , 4 1 0 1  . 7 3 /  3  2  

D A T A  A L F A / 1  . 0 8 2 , I . 3 1 5 , 1 . 6 4 7 , 2 . 1 8 4 , 2 . 9 0 7 , 0 . 5 2 0 0 , 0 . 6 2 6 0 , O . 7 7 5 9 , 1  , 0 1 7  3 3  
1 ,  1 o  3 7 2 , 0 « 2 5 7 2 . >  0 . 3 0 1 7 , 0 »  3 7  8 0 , 0 . 4 8 0 9 , 0 . 6 4 2 8 , 0 . 1 4 3 5 , 0 . 1 6 1 8 . 0 . 1 9 2 1 , 0 . 2  3 4  
2 4 2 8 , 0 . 3 1 1 7 , 0 . 0 9 9 0 , 0 . 1 0  5 0 , 0 . 1 1 6 8 , 0 . 1 3 7 0 « 0 . 1 6 5 1 , 0 . 0 8 3 5 , 0 . € 8 9 0 , 0 . 0 9 4  5  3 5  
3 , 0 . 1 0 1 0 , 0 . 1 0 8 6 , 0 . 0 7 0 8 6 . 0 . 0 7 5 3 9 , 0 . 0 8 0 6 , 0 . 0 8 7 4 2 , 0 . 0 9 5 6 7 , O . 0 6  7  7 4 , 0 . 0  7  3 6  
4 1 8 , 0 . 0 7 4 7 4 , 0 . 0 7 7 3 8 , 0 . 0 8 0 6 9 , 0 . 0 6 5 8 4 , 0 . 0 7 1 6 1 , 0 . 0 7 5 0 8 , 0 . 0 7 6 6 4 , 0 . 0 7 7 9 1  3 7  

1 0 0 0  F O R M A T  (  I H l  , / / / / / , T 1 5 ,  « E L E C T R O N  D E N S I T Y  B R O A D E N I N G  C  A L C  U L  A T  I  C N  •  ,  /  /  ,  ' j O  
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1 T 1 0 , 1 ! 3 A 4 , / , T 1 0 « 2 A 4 , 2 X . F 7 . 2 )  5 1  
K  =  0  5 2  
D C  1 4 0  1 = 1 . 4 5 , 5  5 3  
K = K + 1  5 4  
N U P = I + 4  5 5  
L  =  0  5 6  
D C  1 4 0  J = I « N U P  5 7  
L = L + 1  5 8  

1 4 0  A L F A D  C  K i  L  i  =  A I _ F A <  J  )  5 9  
W R I T E  t 6 . 2 0 0 0 1  ( T E M P C  I  J  ,  I = 1 , 5 )  6 0  

2 0 0 0  F O R M A T  (  /  /  , T 2 5 ,  '  H A L F - W I D T H  O A T  A *  • / ,  T  1  S  . •  E L E C T R O N  O ' - N S *  ,  T 3 0  »  5  ( F  1  5  .  0  J  6 1  
1  i  6 2  

D O  1 4 5  1 = 1 , 9  6 3  
2 0 0 1  F O R M A T < T i e , t H , 4 , T 3 3 . S < 3 X . E 1 1 „ 4 > )  6 4  

1 4 5  W R I T E ( û . 2 0 0 1 )  D E N S  <  I  )  , .  (  A L  F A D  (  I  «  J  )  ,  J =  1  ,  5  )  6 5  
D O  2 0 0  I = 1 » N R A D  6 6  

; 1 5 0  F O R M A T  C 3 F 1 0  « 0  J  6 7  
R E A D ( t 3 , 1 5 0 )  R A D (  I  )  , T R A D (  I  )  , H / , L F (  I  )  6  8  
D O  1 6 0  J = 1 , Ç  6 9  
D O  1 5 5  K = l » 5  7 0  
X I N T R P < X Î = A a . O C ; l O < T E M P ( , K Î  )  7 1  

1 5 5  Y I N T R P C K  )  =  A L F - < ! , D (  J . K »  7 2  
X {Ji= A L O G i O « O E N S ( J Î )  7 3  
P 0 L Y N = 0 . 0 0  7 4  
X X X = A L O G 1 0 4  T R - f l i D C  I  )  J  7 5  
C A L L  P L L Y N N ( : X | N T R P « Y I N T P P , P C l - r N , X X X , 5 , 3 )  7 6  
Y ( J ) = P O L Y N  7 7  

1 6 0  C O N T I N U E  7 8  
I C O U N T = 0  7 9  
X X D E N £ > = 1 4 o O  8 0  

1 7 0  P O L Y N = 0 . 0 0  8 1  
I C O U N T = I C O U N T 4 1  S n  
C A L L  P L L Y N N C X ,  Y . P O L Y N o X X D E N S , ,  9 , 2 )  8 3  
X X A L F A = P O L Y N  3 4  
C A L O e N = 7  o  9 5 6 8 6 ; + 1 2 *  t  ( H A L F *  I  ) / ) ( . X A L F A  )  * * 1 . 5 )  8 5  
C A L O E P 4 = A L O G  1 0  <  C  A L O E N  )  8 6  
T E S T = A B S (  C A L D E L N - X X D E N S )  8 7  
I F ( T E S T . L E . 0 * 0 0 0 0 5 )  G O  T O  1 3 0  8 8  
I P C I C O U N T o G T . S O )  G O  T C  1 9 0  8 9  
X X D E N S = C A L D E N  9 0  
G C  T O  1 7 0  9 1  

1 8 0  E D E N S (  I  ) = 1 0  . 0 # ^ * C A L D E N  9 2  
A L P H A C  Î  ) = X X A L f - A  9 3  
G C  T O  2 0 0  9 4  

1 9 0  C A L D E M = 1 0 ® 0 * » C A L D E N  9 5  
W R I T E *  6 ,  1 9 5 )  F î A O *  I  >  .  T R A O C  I  J  , H A L F <  I  >  . C A L D E N ,  X X A L  F A  9 6  

1 9 5  F O R M A T ( / , T l S , ' » * * * * F L A G * # * * »  E L E C T R O N  D E N S I T Y  I T E R A T I O N  F A I L E D  T O  9 7  
1  C O N V E R G E  W i T H i i N  5 0  I T E R A T I O N S  F O R  :  «  .  T  1 5 .  *  R A D  I  U S -  •  .  E  1  i  .  4  ,  2 X  ,  •  T  E M  9 8  
2 P E R A T U R E =  •  , E  i l  a  .  4  ,  2  X  .  •  F  Ù L L  t o t  D T H  H A L F  M A X  I N T E N S =  •  ,  E  1  1  .  4  ,  /  .  T  1  5  .  »  L  9 9  
3 A S T  C A L C U L A T E D  D E N S I T V =  " . E 1  I  . 4  ,  2 X  ,  •  L A S T  I N T E R P O L A T E D  R E C U C E D  H A L F  I  0 0  
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4  I M  I D T H =  '  $  E  1 1  .  4  )  1 0 1  
E O U N S C I > = 0 « 0 0  1 0 2  
A L P H A ! * J = 0 « 0 0  1 0 3  

2 0 0  C O N T I N U E  1 0 4  
« R I T E < 6 « 1 0 0 1 )  1 0 5  

1 0 0 1  F O R M A T ( / / / / / . T 2  « ' R A D I U S '  . T 1 5 , ' T E M P  ( K ) •  . T 3 0 . • F « H M I  '  » T 4 5  .  • E L E C  D E N S  l O o  
1 • . T 6 0 , • R E D U C E D  H A L F - W I D T H " )  1 0 7  

D O  3 0 0  N = l t N R A D  1 C 8  
1 0 0 2  F O R M A T ( T 2 , E 1 2 . 5 « T l S , E 1 2 w 5 o T 2 8 , 4 ( 3 X . E i 2 . 5 ) )  1 0 9  

3 0 0  W R I T E  ( 6 .  1 0 0 2 )  I R  A D (  N  )  .  T R  A D  C  N  )  .  H  A L F  (  N  )  , E O E  N S  (  N  )  .  A ' . .  P H  A  <  N  )  1 1 0  
9 9 9 9  C O N T I N U E  H I  

S T O P  1 1 2  
E N D  1 1 3  
S U B R O U T I N E  P L L  Y N N (  X  ,  Y  .  P O L V N  »  >  X X  , N U M X  ,  N P O I . Y  Ï  1 1 4  
D I M E N S I O N  X ( 1 0 0 ) , Y ( 1 0 0 )  1 1 5  

C  1 1 6  
C  N  P O I N T  P O L Y N O M I A L  I N T E R P O L  A T  N G  S U B R O U T I N E  1 1 7  
C  

C  

1 1 8  
C  T C  I N T E R P O L A T E  A  V A L U E  F O R  X X . X  T H E  N P O L Y  N E A R E S T  K N O W N  P O I N T S  A R E  1 1 9  
C  S E L E C T E D  A N D  ^ , N  I N T E R P O L A T I N G  P O L Y N C M I A L  O F  D E G R E E  N P C L Y - l  I S  1 2 0  
C  F I T T E D  T O  T H E S E  P O I N T S  1 2 1  
C  X  A N D  Y  A R E  T H E  A R R A Y S  O F  N U M X  K N O W N  P O I N T S  O N  T H E  C U R V E  1 2 2  
C  T H E  R E S U L T  I S  P O L Y N  1 2 3  r u  

1 2 4  o  
1 0 1  P O L Y N  =  0 « 0  1 2 5  v o  

N / a = ( N P O L Y + l  ) / • ; >  1 2 6  
N M l = N M 4 h l  1 2 7  
N U P = N U M X + e v M l - N P C L Y  1 2 8  
D O  1 0 2  J = N M 1 . N U P  1 2 9  
I F C X X X « L E « X t J ) )  G O  T O  1 0 4  1 3 0  

1 0 2  C O N T I N U E  1 3 1  
J = N U P  1 3 2  

1 0 4  L = J - N M  1 3 3  
L L L = L + N P O L Y - 1  1 3 4  
D O  1 0 6  K = L , L L I _  1 3 5  
T E R M = 1 . 0  1 3 6  
D O  1 0 5  M = L . L L I L  1 3 7  
I F ( K . E Q . M )  G O  T O  1 0 5  1 3 8  
T E R M = T E R M * ( X X X - X < M ) ) / ( X ( K ) - X ( M ) )  1 3 9  

1 0 5  C O N T I N U E  1 4 0  
T e N W = Y < K ) * T E R M  1 ^ 1  

1 0 6  P C L Y N = P O L Y N + T E R M  * ^ 2  
R E T U R N  1 4 3  
E N D  144 
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